Với giải Bài 4.22 trang 58 SBT Toán lớp 10 Kết nối tri thức chi tiết trong Bài 10: Vectơ trong mặt phẳng tọa độ giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:
Giải sách bài tập Toán lớp 10 Bài 10: Vectơ trong mặt phẳng tọa độ
Bài 4.22 trang 58 SBT Toán 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho ba điểm M(4; 0), N(5; 2) và P(2, 3). Tìm toạ độ các đỉnh của tam giác ABC, biết M, N, P theo thứ tự là trung điểm cạnh BC, CA, AB.
Lời giải:
Cách 1:
Gọi A(xA; yA); B(xB; yB) và C(xC; yC) là tọa độ ba đỉnh của tam giác ABC.
Ta có:
+) M(4; 0) là trung điểm của BC nên
(1)
+) N(5; 2) là trung điểm của CA nên
(2)
+) P(2; 3) là trung điểm của AB nên
(3)
Thay (2) và (3) vào (1) ta được:
Þ A(3; 5)
Khi đó Þ B(1; 1)
Þ C(7; –1)
Vậy A(3; 5), B(1; 1) và C(7; –1).
Cách 2:
Do M, N, P lần lượt là trung điểm của BC, CA, AB
Nên MN, NP, PM là các đường trung bình của tam giác ABC.
Þ MN // AB, NP // BC, MP // AC.
+) Do MN // BM và NP // BM nên tứ giác MNPB là hình bình hành
Gọi B(xB; yB) và có M(4; 0), N(5; 2) và P(2, 3).
và
Khi đó Þ B(1; 1)
Tương tự ta cũng có A(3; 5) và C(7; –1).
Vậy A(3; 5), B(1; 1) và C(7; –1).
Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài 4.24 trang 58 SBT Toán 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho hai điểm M(–2; 1) và N(4; 5)...
Bài 4.25 trang 59 SBT Toán 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho hai điểm M(–3; 2) và N(2; 7)...
Bài 4.26 trang 60 SBT Toán 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho hai điểm C(1; 6) và D(11; 2)...
Xem thêm các bài giải SBT Toán 10 Kết nối tri thức hay, chi tiết khác:
Bài 9: Tích của một vectơ với một số
Bài 10: Vectơ trong mặt phẳng tọa độ
Bài 11: Tích vô hướng của hai vectơ