Với giải Bài 5 trang 103 Toán 12 Tập 2 Cánh diều chi tiết trong Bài tập cuối chương 6 trang 103 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:
Giải bài tập Toán 12 Bài tập cuối chương 6 trang 103
Bài 5 trang 103 Toán 12 Tập 2: Giả sử trong một nhóm người có 2 người nhiễm bệnh, 58 người còn lại là không nhiễm bệnh. Để phát hiện ra người nhiễm bệnh, người ta tiến hành xét nghiệm tất cả mọi người của nhóm đó. Biết rằng đối với người nhiễm bệnh thì xác suất xét nghiệm có kết quả dương tính là 85%, nhưng đối với người không nhiễm bệnh thì xác suất xét nghiệm có phản ứng dương tính là 7%.
a) Vẽ sơ đồ hình cây biểu thị tình huống trên.
b) Giả sử X là một người trong nhóm bị xét nghiệm có kết quả dương tính. Tính xác suất để X là người nhiễm bệnh.
Lời giải:
a) Xét hai biến cố:
A: “Người được chọn ra không nhiễm bệnh”;
B: “Người được chọn ra có phản ứng dương tính”.
Vì trong một nhóm người có 2 người nhiễm bệnh, 58 người còn lại là không nhiễm bệnh nên P(A) = và P( ) = .
Do đối với người không nhiễm bệnh thì xác suất xét nghiệm có phản ứng dương tính là 7% nên P(B | A) = 7% = 0,07.
Vì đối với người nhiễm bệnh thì xác suất xét nghiệm có kết quả dương tính là 85% nên P(B | ) = 85% = 0,85.
Sơ đồ hình cây biểu thị tình huống đã cho như sau:
b) Ta thấy xác suất nhiễm bệnh của X khi X là một người trong nhóm bị xét nghiệm có kết quả dương tính chính là P( | B). Áp dụng công thức Bayes, ta có:
P( | B) = = .
Vậy xác suất để X là người nhiễm bệnh là 0,295.
Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:
Bài 1 trang 103 Toán 12 Tập 2: Cho hai biến cố xung khắc A, B với P(A) = 0,2; P(B) = 0,4. Khi đó, P(A | B) bằng:...
Bài 2 trang 103 Toán 12 Tập 2: Một chiếc hộp có 40 viên bi, trong đó có 12 viên bi màu đỏ và 28 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Bạn Ngân lấy ngẫu nhiên viên bi từ chiếc hộp đó hai lần, mỗi lần lấy ra một viên bi và viên bi được lấy ra không bỏ lại hộp. Tính xác suất để cả hai lần bạn Ngân đều lấy ra được viên bi màu vàng....
Bài 3 trang 103 Toán 12 Tập 2: Một cửa hàng kinh doanh tổ chức rút thăm trúng thưởng cho hai loại sản phẩm. Tỉ lệ trúng thưởng của các loại sản phẩm I, II lần lượt là: 6%; 4%. Trong một hộp kín gồm các thăm cùng loại, người ta để lẫn lộn 200 chiếc thăm cho sản phẩm loại I và 300 chiếc thăm cho sản phẩm loại II. Một khách hàng lấy ngẫu nhiên 1 chiếc thăm từ chiếc hộp đó....
Bài 4 trang 103 Toán 12 Tập 2: Một xạ thủ bắn vào bia số 1 và bia số 2. Xác suất để xạ thủ đó bắn trúng bia số 1, bia số 2 lần lượt là 0,8; 0,9. Xác suất để xạ thủ đó bắn trúng cả hai bia là 0,8. Xét hai biến cố sau:...
Bài 5 trang 103 Toán 12 Tập 2: Giả sử trong một nhóm người có 2 người nhiễm bệnh, 58 người còn lại là không nhiễm bệnh. Để phát hiện ra người nhiễm bệnh, người ta tiến hành xét nghiệm tất cả mọi người của nhóm đó. Biết rằng đối với người nhiễm bệnh thì xác suất xét nghiệm có kết quả dương tính là 85%, nhưng đối với người không nhiễm bệnh thì xác suất xét nghiệm có phản ứng dương tính là 7%....
Xem thêm các bài giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:
§3. Phương trình mặt cầu
Bài tập cuối chương 5
§1. Xác xuất có điều kiện
§2. Công thức xác suất toàn phần. Công thức Bayes
Bài tập cuối chương 6
THỰC HÀNH PHẦN MỀM GEOGEBRA