Một chiếc hộp có 40 viên bi, trong đó có 12 viên bi màu đỏ và 28 viên bi màu vàng

547

Với giải Bài 2 trang 103 Toán 12 Tập 2 Cánh diều chi tiết trong Bài tập cuối chương 6 trang 103 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài tập cuối chương 6 trang 103

Bài 2 trang 103 Toán 12 Tập 2: Một chiếc hộp có 40 viên bi, trong đó có 12 viên bi màu đỏ và 28 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Bạn Ngân lấy ngẫu nhiên viên bi từ chiếc hộp đó hai lần, mỗi lần lấy ra một viên bi và viên bi được lấy ra không bỏ lại hộp. Tính xác suất để cả hai lần bạn Ngân đều lấy ra được viên bi màu vàng.

Lời giải:

Xét hai biến cố:

A: “Bạn Ngân lấy được viên bi màu vàng ở lần lấy thứ nhất”;

B: “Bạn Ngân lấy được viên bi màu vàng ở lần lấy thứ hai”.

Khi đó, xác suất để cả hai lần bạn Ngân đều lấy ra được viên bi màu vàng chính là xác suất có điều kiện P(B | A).

Lấy một viên bi lần thứ nhất có 40 cách chọn, viên bi được lấy ra không bỏ lại hộp nên lấy một viên bi lần thứ hai có 39 cách chọn. Do đó n(Ω) = 40 ∙ 39.

Bạn Ngân lấy được viên bi màu vàng ở lần lấy thứ nhất thì có 28 cách chọn, ở lần lấy thứ hai có 39 cách chọn. Do đó, n(A) = 28 ∙ 39.

Bạn Ngân lấy được viên bi màu vàng ở lần lấy thứ nhất thì có 28 cách chọn, lấy ra viên bi màu vàng ở lần lấy thứ hai có 27 cách chọn. Do đó, n(A ∩ B) = 28 ∙ 27.

Khi đó, P(B | A) = nABnA=28272839=2739=913.

Vậy xác suất để cả hai lần bạn Ngân đều lấy ra được viên bi màu vàng là 913

Đánh giá

0

0 đánh giá