Với tóm tắt lý thuyết Toán lớp 12 Bài 2: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số sách Kết nối tri thức hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 12.
Lý thuyết Toán 12 Bài 2: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
A. Lý thuyết Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
1. Định nghĩa
Khái niệm GTLN, GTNN của hàm số
Cho hàm số y = f(x) xác định trên tập D. - Số M là giá trị lớn nhất của hàm số y = f(x) trên tập D nếu f(x) M với mọi và tồn tại sao cho = M. Kí hiệu M = hoặc M = - Số m là giá trị nhỏ nhất của hàm số y = f(x) trên tập D nếu f(x) m với mọi và tồn tại sao cho = m. Kí hiệu m = hoặc m = |
Ví dụ: Tìm GTLN, GTNN của hàm số
Tập xác định của hàm số là
Ta có:
0; dấu bằng xảy ra khi , tức x = -1 hoặc x = 1.
Do đó
; dấu bằng xảy ra khi , tức x = 0.
Do đó
2. Cách tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một đoạn
Giả sử y = f(x) là hàm số liên tục trên và có đạo hàm trên (a;b), có thể trừ ra tại một số hữu hạn điểm mà tại đó hàm số không có đạo hàm. Giả sử chỉ có hữu hạn điểm trong đoạn mà đạo hàm f’(x) = 0. Các bước tìm GTLN và GTNN của hàm số f(x) trên đoạn :
M = ; m = |
Ví dụ: Tìm GTLN và GTNN của hàm số trên đoạn
Ta có: hoặc (vì )
y(0) = 3; y(4) = 195; y() = -1
Do đó: ;
Sơ đồ tư duy Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
B. Bài tập Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Bài 1. Giá trị nhỏ nhất của hàm số y = x3 + 3x2 trên đoạn [−5; −1] bằng
A. 0.
B. 4.
C. 2.
D. −50.
Hướng dẫn giải
Đáp án đúng là: D
Trên đoạn [−5; −1], có y' = 3x2 + 6x;
Có y' = 0 x = 0 (loại) hoặc x = −2 (nhận).
Có y(−5) = −50; y(−2) = 4; y(−1) = 2.
Vậy .
Bài 2. Gọi m và M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số trên đoạn [−1; 34]. Tổng S = 3m + M bằng.
A. .
B. .
C. .
D. .
Hướng dẫn giải
Đáp án đúng là: A
Trên đoạn [−1; 34], có ;
(nhận).
Có .
Do đó . Suy ra .
Bài 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x3 – 3x2 – 9x + 5 trên đoạn [−2; 2].
Hướng dẫn giải
Trên đoạn [−2; 2], có y' = 3x2 – 6x – 9; y' = 0 x = −1 (nhận) hoặc x = 3 (loại).
Có y(−2) = 3; y(−1) = 10; y(2) = −17.
Vậy .
Bài 4. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn [0; 3].
Hướng dẫn giải
Trên đoạn [0; 3], có ;
Có y' = 0 2x2 + 2x – 4 = 0 x = −2 (loại) hoặc x = 1 (nhận).
Có y(0) = 0; y (1) = −1; y(3) = .
Vậy .
Bài 5. Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ t là f(t) = 45t2 – t3 (kết quả khảo sát được trong tháng 8 vừa qua). Nếu xem f'(t) là tốc độ truyền bệnh (người/ngày) tại thời điểm t. Hỏi tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?
Hướng dẫn giải
Ta có f'(t) = 90t – 3t2.
Bài toán trở thành tìm giá trị lớn nhất của g(t) = f'(t) = 90t – 3t2 trên (0; +∞).
Có g'(t) = 90 – 6t; g'(t) = 0 t = 15.
Bảng biến thiên
Dựa vào bảng biến thiên, ta có tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ 15
Xem thêm các bài tóm tắt lý thuyết Toán lớp 12 Kết nối tri thức hay, chi tiết khác:
Lý thuyết Bài 1: Tính đơn điệu và cực trị của hàm số
Lý thuyết Bài 2: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Lý thuyết Bài 3: Đường tiệm cận của đồ thị hàm số
Lý thuyết Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
Lý thuyết Bài 5: Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn