Giải thích vì sao nếu f’(x) không đổi dấu qua x0 thì x0 không phải là điểm cực trị của hàm số f(x)

339

Với giải Câu hỏi trang 11 Toán 12 Tập 1 Kết nối tri thức chi tiết trong Bài 1: Tính đơn điệu và cực trị của hàm số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số

Câu hỏi trang 11 Toán 12 Tập 1: Giải thích vì sao nếu f’(x) không đổi dấu qua x0 thì x0 không phải là điểm cực trị của hàm số f(x)?

Lời giải:

Giả sử hàm số y=f(x) liên tục trên khoảng (a; b) chứa điểm x0 và có đạo hàm trên các khoảng (a;x0) và (x0;b). Nếu f’(x) không đổi dấu qua x0 thì:

TH1: f(x)<0 với mọi x(a;x0) và f(x)<0 với mọi x(x0;b), ta có bảng biến thiên:

Giả sử hàm số y=f(x) liên tục trên khoảng (a; b) chứa điểm x0 và có đạo hàm trên các khoảng (a;x0) và (x0;b). Nếu f’(x) không đổi dấu qua x0 thì:

Tài liệu VietJack

TH1: f(x)<0 với mọi x(a;x0) và f(x)<0 với mọi x(x0;b), ta có bảng biến thiên:

Tài liệu VietJack

Do đó, x0 không phải là điểm cực trị của hàm số f(x).

Đánh giá

0

0 đánh giá