Giải Toán 11 trang 81 Tập 2 Chân trời sáng tạo

687

Với lời giải Toán 11 trang 81 Tập 2 chi tiết trong Bài 4: Khoảng cách trong không gian sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 Bài 4: Khoảng cách trong không gian

Thực hành 4 trang 81 Toán 11 Tập 2: Tính thể tích của một bồn chứa có dạng khối chóp cụt đều có kích thước được cho như trong Hình 20.

Thực hành 4 trang 81 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Diện tích đáy lớn là: S = 52 = 25 (m2)

Diện tích đáy bé là: S′ = 22 = 4 (m2)

Thể tích của bồn chứa là: V=13.325+25.4+4=39m3

Vận dụng 3 trang 81 Toán 11 Tập 2: Tính thể tích cái nêm hình lăng trụ đứng có kích thước như trong Hình 21.

Vận dụng 3 trang 81 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Ta có khối nêm là lăng trụ đứng có đáy là tam giác vuông có các cạnh góc vuông lần lượt là 7cm và 24 cm.

Do đó diện tích đáy là: S=12.7.24=84cm2

Chiều cao của khối lăng trụ là h = 22 cm

Thể tích của khối nêm là: V = S.h = 84.22 = 1848 (cm3)

Bài tập

Bài 1 trang 81 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a có O là giao điểm của hai đường chéo, ABC^=60°,SO(ABCD), SO=a3 . Tính khoảng cách từ O đến mặt phẳng (SCD).

Lời giải:

Bài 1 trang 81 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

Kẻ OI ⊥ CD, OH ⊥ SI

Ta có: SOABCDOICDCDSOOICDCDSOICDOH

Mà OH ⊥ SI Suy ra OH ⊥ (SCD)

Do đó d(O, (SCD)) = OH.

Ta có: ΔABC đều  AC = a OC=12AC=a2

• Xét ΔABD, áp dụng định lí cos, ta có:

BD=AB2+AD22.AB.AD.cosBAD^=a3

OD=12BD=a32

• Xét ΔOCD vuông tại O có OI là đường cao:

1OI2=1OC2+1OD2OI=a34

Ta có SO ⊥ (ABCD) SO ⊥ OI

Do đó, tam giác SOI vuông tại O có OH là đường cao nên

1OH2=1SO2+1OI2OH=a5117

dO,SCD=a5117.

Vậy khoảng cách từ O đến mặt phẳng (SCD) là a5117.

Bài 2 trang 81 Toán 11 Tập 2: Cho hai tam giác cân ABC và ABD có đáy chung AB và không cùng nằm trong một mặt phẳng.

a) Chứng minh rằng AB ⊥ CD.

b) Xác định đoạn vuông góc chung của AB và CD.

Lời giải:

Bài 2 trang 81 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

a) Gọi M là trung điểm của AB.

Ta có CMABDMABABMCDABCD

b) Gọi H là hình chiếu vuông góc M của trên CD.

Ta có CMDABCDMHMHABCDMH

Do đó MH là đoạn vuông góc chung của AB và CD.

Bài 3 trang 81 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA=SB=SC=SD=a2 . Gọi I, J lần lượt là trung điểm của AB và CD.

a) Chứng minh AB ⊥ (SIJ).

b) Tính khoảng cách giữa hai đường thẳng AB và SC.

Lời giải:

Bài 3 trang 81 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

a) Ta có: ΔSAB cân tại S và đáy là hình vuông ABCD.

SIABIJABABSIJ.

b) Ta có: AB // CD ⇒ AB // (ABCD)

 d(AB, SC) = d(AB, (SCD)) = d(I, (SCD))

Gọi H, K lần lượt là hình chiếu vuông góc của I, O trên SJ

Ta có IH//OKIH=2OK

Vì AB // CD nên CD ⊥ (SIJ)  CD ⊥ IH IH ⊥ (SCD)

 d(AB, CD) = d(AB, (SCD)) = IH = 2OK

Ta có: ABCD là hình vuông

 OA=AC2=AD2+CD22=a22

• Xét ΔSAO vuông tại O có

SO=SA2OA2=a62.

• Xét ΔSOJ vuông tại O có đường cao OK nên

OK=SO.OJSO2+OJ2=a4214

Do đó dAB,SC=2OK=a427.

Bài 4 trang 81 Toán 11 Tập 2: Cho hình lăng trụ tam giác đều ABC.A′B′C′ có AB = a, góc giữa hai mặt phẳng (A′BC) và (ABC) bằng 60°.

a) Tính khoảng cách giữa hai đáy của hình lăng trụ.

b) Tính thể tích của khối lăng trụ.

Lời giải:

Bài 4 trang 81 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

a) Vì khối lăng trụ đều nên gọi là trung điểm của BC AM ⊥ BC. Do đó góc giữa hai mặt phẳng ((A′BC), (ABC)) = SMA^=60° .

Do đó khoảng cách giữa hai đáy của lăng trụ là:

AA'=AM.tanSMA^=a32tan60°=3a2.

b) Thể tích khối lăng trụ là: V=AA'.SΔABC=3a2.a232=334a3.

Bài 5 trang 81 Toán 11 Tập 2: Một cây cầu dành cho người đi bộ (Hình 22) có mặt sàn cầu cách mặt đường 3,5 m, khoảng cách từ đường thẳng a nằm trên tay vịn của cầu đến mặt sàn cầu là 0,8 m. Gọi b là đường thẳng kẻ theo tim đường. Tính khoảng cách giữa hai đường thẳng a và b.

Bài 5 trang 81 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Vì tay vịn cầu song song với mặt đường nên khoảng cách giữa hai đường thẳng a và b

chính bằng khoảng cách từ đường thẳng a xuống mặt đường.

Khoảng cách giữa hai đường thẳng a và b bằng: 3,5 + 0,8 = 4,3(m).

Vậy khoảng cách giữa hai đường thẳng a và b là 4,3 m.

Đánh giá

0

0 đánh giá