Giải SBT Toán 11 trang 52 Tập 2 Kết nối tri thức

331

Với lời giải SBT Toán 11 trang 52 Tập 2 chi tiết trong Bài tập cuối chương 8 trang 51 sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài tập cuối chương 8 trang 51

Bài 8.17 trang 52 SBT Toán 11 Tập 2: Hai bạn Sơn và Tùng độc lập với nhau, mỗi người tung một con xúc xắc. Xác suất để xúc xắc của bạn Sơn xuất hiện số lẻ, xúc xắc của bạn Tùng xuất hiện số lớn hơn 4 là

A. 16 .

B. 15 .

C. 17 .

D. 211 .

Lời giải:

Đáp án đúng là: A

Gọi biến cố A: “Xúc xắc của bạn Sơn xuất hiện số lẻ”.

Biến cố B: “Xúc xắc của bạn Tùng xuất hiện số lớn hơn 4”.

Biến cố C: “Xúc xắc của bạn Sơn xuất hiện số lẻ và xúc xắc của bạn Tùng xuất hiện số lớn hơn 4”.

Ta có C = AB. Vì A, B độc lập nên P(C) = P(AB) = P(A) . P(B).

Ω = {1; 2; 3; 4; 5; 6}, n(Ω) = 6.

Có A = {1; 3; 5}, n(A) = 3. Do đó P(A) = 36=12.

Có B = {5; 6}, n(B) = 2. Do đó P(B) = 26=13.

Do đó P(C) = 1213=16.

Vậy xác suất để xúc xắc của bạn Sơn xuất hiện số lẻ, xúc xắc của bạn Tùng xuất hiện số lớn hơn 4 là 16.

Bài 8.18 trang 52 SBT Toán 11 Tập 2: Một trường học có hai máy in A và B hoạt động độc lập. Trong 24 giờ hoạt động, xác suất để máy A và máy B gặp lỗi kĩ thuật tương ứng là 0,08 và 0,12. Xác suất để trong 24 giờ hoạt động có nhiều nhất một máy gặp lỗi kĩ thuật là

A. 0,99.

B. 0,9904.

C. 0,991.

D. 0,9906.

Lời giải:

Đáp án đúng là: B

Gọi biến cố A: “Máy A gặp lỗi kĩ thuật trong 24 giờ hoạt động”.

Biến cố B: “Máy B gặp lỗi kĩ thuật trong 24 giờ hoạt động”.

Biến cố C: “Trong 24 giờ hoạt động có nhiều nhất một máy gặp lỗi kĩ thuật”.

Biến cố C¯: “Trong 24 giờ hoạt động cả hai máy đều gặp lỗi kĩ thuật”.

Khi đó C¯ = AB mà A, B độc lập nên P(C¯) = P(AB) = P(A).P(B).

Có P(A) = 0,08; P(B) = 0,12.

Do đó P(C¯) = P(A).P(B) = 0,08.0,12 = 0,096.

Suy ra P(C) = 1-P(C¯) = 1-0,096 = 0,9904.

Vậy xác suất để trong 24 giờ hoạt động có nhiều nhất một máy gặp lỗi kĩ thuật là 0,9904.

Bài 8.19 trang 52 SBT Toán 11 Tập 2: Hai xạ thủ A và B thi bắn súng một cách độc lập với nhau. Xác suất để xạ thủ A và xạ thủ B bắn trúng bia tương ứng là 0,7 và 0,8. Xác suất để có đúng một xạ thủ bắn trúng bia là

A. 0,38.

B. 0,385.

C. 0,37.

D. 0,374.

Lời giải:

Đáp án đúng là: A

Gọi biến cố A: “Xạ thủ A bắn trúng bia”.

Biến cố B: “Xạ thủ B bắn trúng bia”.

Biến cố C: “Có đúng một xạ thủ bắn trúng bia”.

Ta có C=AB¯A¯B. Khi đó PC=PAB¯+PA¯B.

Vì A, B độc lập nên A, B¯ độc lập và A¯, B độc lập.

Do đó P(C) = P(A).P(B¯)+P(A¯).P(B).

Vì P(A) = 0,7 nên P(A¯) = 1-P(A) = 1-0,7 = 0,3.

Vì P(B) = 0,8 nên P(B¯) = 1-P(B) = 1-0,8 = 0,2.

Khi đó, P(C) = P(A).P(B¯)+P(A¯).P(B) = 0,7 . 0,2 + 0,3 . 0,8 = 0,38.

Vậy xác suất để có đúng một xạ thủ bắn trúng bia là 0,38.

Bài 8.20 trang 52 SBT Toán 11 Tập 2: Hai bạn An và Bình độc lập với nhau tham gia một cuộc thi. Xác suất để bạn An và bạn Bình đạt giải tương ứng là 0,8 và 0,6. Xác suất để có ít nhất một bạn được giải là

A. 0,94.

B. 0,924.

C. 0,92.

D. 0,93.

Lời giải:

Đáp án đúng là: C

Gọi biến cố A: “An đạt được giải”.

Biến cố B: “Bình đạt được giải”.

Biến cố C: “Có ít nhất một bạn được giải”.

Biến cố C¯: “Không có bạn nào đạt giải”.

C¯= A¯B¯ . Vì A, B độc lập nên A¯;B¯ cũng độc lập.

Suy ra P(C¯) = P(A¯B¯) = P(A¯).P(B¯).

Vì P(A) = 0,8 P(A¯) = 1-P(A) = 1-0,8 = 0,2.

Vì P(B) = 0,6 P(B¯) = 1-P(B) = 1-0,6 = 0,4.

Do đó P(C¯) = P(A¯).P(B¯) = 0,2 × 0,4 = 0,08. Suy ra P(C) = 0,92.

Vậy xác suất để có ít nhất một bạn được giải là 0,92.

B. TỰ LUẬN

Bài 8.21 trang 52 SBT Toán 11 Tập 2: Một nhóm 30 bệnh nhân có 24 người điều trị bệnh X, có 12 người điều trị cả bệnh X và bệnh Y, có 26 người điều trị ít nhất một trong hai bệnh X hoặc Y. Chọn ngẫu nhiên một bệnh nhân. Tính xác suất để người đó:

a) Điều trị bệnh Y.

b) Điều trị bệnh Y và không điều trị bệnh X.

c) Không điều trị cả hai bệnh X và Y.

Lời giải:

Gọi biến cố A: “Người đó điều trị bệnh X”.

Biến cố B: “Người đó điều trị bệnh Y”.

Biến cố A B: “Người đó điều trị ít nhất một trong hai bệnh X hoặc Y”.

Biến cố A¯B : “Người đó điều trị bệnh Y và không điều trị bệnh X”.

Biến cố A¯B¯ : “Người đó không điều trị cả hai bệnh X và Y”.

Ta có: P(A) = 2430; P(AB) = 1230 ; P(AB) = 2630.

a) Ta cần tính P(B).

Ta có P(A B) = P(A) + P(B) – P(AB) nên

P(B) = P(A B) − P(A) + P(AB) = 26302430+1230=1430=715 .

Vậy xác suất để người đó điều trị bệnh Y là 715 .

b) Ta cần tính P(A¯B) .

Có B = AB A¯B, suy ra P(B) = P(AB) + P(A¯B)

PA¯B=PBPAB=14301230=230=115.

Vậy xác suất để người đó điều trị bệnh Y và không điều trị bệnh X là 115 .

c) Ta cần tính P(A¯B¯).

Ta có A¯B¯ là biến cố đối của A B.

Do đó P(A¯B¯) = 1-P(AB) = 1-2630=430=215 .

Vậy xác suất để người đó không điều trị cả hai bệnh X và Y là 215.

Bài 8.22 trang 52 SBT Toán 11 Tập 2: Một lớp có 40 học sinh, trong đó có 34 em thích ăn chuối, 22 em thích ăn cam và 2 em không thích ăn cả hai loại quả đó. Chọn ngẫu nhiên một học sinh trong lớp. Tính xác suất để em đó:

a) Thích ăn ít nhất một trong hai loại quả chuối hoặc cam.

b) Thích ăn cả hai loại quả chuối và cam.

Lời giải:

Gọi biến cố A: “Học sinh đó thích ăn chuối”.

Biến cố B: “Học sinh đó thích ăn cam”.

Biến cố A¯B¯ : “Học sinh đó không thích ăn chuối và ăn cam”.

Biến cố A B: “Học sinh đó thích ăn ít nhất một trong hai loại quả chuối hoặc cam”.

Biến cố AB: “Học sinh đó thích ăn cả hai loại quả chuối và cam”.

Ta có P(A) = 3440 ; P(B) = 2240; P(AB¯) = 240.

a) Ta cần tính P(A B).

Ta có A B là biến cố đối của A¯B¯.

Do đó P(AB) = 1-P(A¯B¯) = 1-240=3840=1920.

Vậy xác suất để học sinh đó thích ăn ít nhất một trong hai loại quả chuối hoặc cam là 1920 .

b) Ta cần tính P(AB).

Ta có P(AB) = P(A) + P(B) – P(A B) = 3440+22403840=1840=920 .

Vậy xác suất để học sinh đó thích ăn cả hai loại quả chuối và cam là 920 .

Bài 8.23 trang 52 SBT Toán 11 Tập 2: Một dãy phố gồm 40 gia đình, trong đó 23 gia đình có điện thoại thông minh, 18 gia đình có laptop và 26 gia đình có ít nhất một trong hai thiết bị này. Chọn ngẫu nhiên một gia đình trong dãy phố. Tính xác suất để gia đình đó:

a) Có điện thoại thông minh và laptop.

b) Có điện thoại thông minh nhưng không có laptop.

c) Không có cả điện thoại thông minh và laptop.

Lời giải:

Gọi biến cố A: “Gia đình đó có điện thoại thông minh”.

Biến cố B: “Gia đình đó có laptop”.

Biến cố AB: “Gia đình đó có điện thoại thông minh và laptop”.

Biến cố A B: “Gia đình đó có ít nhất một trong hai thiết bị”.

Biến cố AB¯ : “Gia đình đó có điện thoại thông minh nhưng không có laptop”.

Biến cố A¯B¯ : “Gia đình đó không có cả điện thoại thông minh và laptop”.

Ta có: P(A) = 2340; P(B) = 1840; P(AB) = 2640.

a) Ta cần tính P(AB).

Có P(AB) = P(A) + P(B) – P(A B) = 2340+18402640=1540=38 .

b) Ta cần tính P(AB¯) .

Ta có: A = AB AB¯, do đó P(A) = P(ABAB¯)

P(A) = P(AB)+P(AB¯)

P(AB¯) = P(A) - P(AB) = 23401540=840=15.

Vậy xác suất để gia đình có điện thoại thông minh nhưng không có laptop là 15 .

c) Ta cần tính P(A¯B¯) .

Ta có A¯B¯ là biến cố đối của A B.

Do đó P(A¯B¯) = 1-P(AB) = 1-2640=1440=720.

Vậy xác suất để gia đình không có cả điện thoại thông minh và laptop là 720 .

Đánh giá

0

0 đánh giá