Một dãy phố gồm 40 gia đình, trong đó 23 gia đình có điện thoại thông minh

1 K

Với giải Bài 8.23 trang 52 SBT Toán lớp 11 Kết nối tri thức chi tiết trong Bài tập cuối chương 8 trang 51 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán lớp 11 Bài tập cuối chương 8 trang 51

Bài 8.23 trang 52 SBT Toán 11 Tập 2: Một dãy phố gồm 40 gia đình, trong đó 23 gia đình có điện thoại thông minh, 18 gia đình có laptop và 26 gia đình có ít nhất một trong hai thiết bị này. Chọn ngẫu nhiên một gia đình trong dãy phố. Tính xác suất để gia đình đó:

a) Có điện thoại thông minh và laptop.

b) Có điện thoại thông minh nhưng không có laptop.

c) Không có cả điện thoại thông minh và laptop.

Lời giải:

Gọi biến cố A: “Gia đình đó có điện thoại thông minh”.

Biến cố B: “Gia đình đó có laptop”.

Biến cố AB: “Gia đình đó có điện thoại thông minh và laptop”.

Biến cố A B: “Gia đình đó có ít nhất một trong hai thiết bị”.

Biến cố AB¯ : “Gia đình đó có điện thoại thông minh nhưng không có laptop”.

Biến cố A¯B¯ : “Gia đình đó không có cả điện thoại thông minh và laptop”.

Ta có: P(A) = 2340; P(B) = 1840; P(AB) = 2640.

a) Ta cần tính P(AB).

Có P(AB) = P(A) + P(B) – P(A B) = 2340+18402640=1540=38 .

b) Ta cần tính P(AB¯) .

Ta có: A = AB AB¯, do đó P(A) = P(ABAB¯)

P(A) = P(AB)+P(AB¯)

P(AB¯) = P(A) - P(AB) = 23401540=840=15.

Vậy xác suất để gia đình có điện thoại thông minh nhưng không có laptop là 15 .

c) Ta cần tính P(A¯B¯) .

Ta có A¯B¯ là biến cố đối của A B.

Do đó P(A¯B¯) = 1-P(AB) = 1-2640=1440=720.

Vậy xác suất để gia đình không có cả điện thoại thông minh và laptop là 720 .

Đánh giá

0

0 đánh giá