Giải SGK Toán 8 Bài 2 (Cánh diều): Ứng dụng của định lí Thalès trong tam giác

2.2 K

Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 8 Bài 2: Ứng dụng của định lí Thalès trong tam giác chi tiết sách Toán 8 Tập 2 Cánh diều giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 8. Mời các bạn đón xem:

Giải bài tập Toán lớp 8 Bài 2: Ứng dụng của định lí Thalès trong tam giác

Giải Toán 8 trang 58 Tập 2

Khởi động trang 58 Toán 8 Tập 2: Từ xa xưa, con người đã muốn tìm hiểu về Mặt Trời, Trái Đất, Mặt Trăng, chẳng hạn: Đường kính của mỗi hành tinh đó là bao nhiêu? Khoảng cách từ Trái Đất đến Mặt Trăng và Mặt Trời là bao nhiêu? Dựa vào hiện tượng Nhật thực và Nguyệt thực, các nhà toán học và thiên văn học Hy Lạp cổ đại đã đưa ra được câu trả lời cho những vấn đề trên.

Khởi động trang 58 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Vào thời điểm xảy ra Nhật thực (Nguyệt thực), đường kính của Mặt Trời và Mặt Trăng có tỉ lệ với khoảng cách từ Trái Đất đến Mặt Trời và đến Mặt Trăng hay không?

Lời giải:

Sau bài học này, chúng ta sẽ giải quyết được câu hỏi trên như sau:

Khởi động trang 58 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Hình vẽ trên mô tả vị trí tương đối của Mặt Trời, Mặt Trăng và Trái Đất khi xảy ra hiện tượng Nhật thực.

Gọi khoảng cách từ Trái Đất đến Mặt Trời, Mặt Trăng lần lượt là dS = ES; dm = EM.

Gọi bán kính của Mặt Trời, Mặt Trăng lần lượt là RS = SH và RM = MI.

Xét tam giác EHS, ta có EIM^=EHS^=90° nên MI // SH.

Do đó, áp dụng hệ quả của định lí Thalès, ta có: MISH=EMES.

Vậy dmdS=RmRS, hay vào thời điểm xảy ra Nhật thực, đường kính của Mặt Trời và Mặt Trăng tỉ lệ với khoảng cách từ Trái Đất đến Mặt Trời và đến Mặt Trăng.

Ta cũng có kết quả trên tương ứng với thời điểm xảy ra Nguyệt thực.

I. Ước lượng khoảng cách

Giải Toán 8 trang 59 Tập 2

Luyện tập 1 trang 59 Toán 8 Tập 2: Bạn Loan đặt một cái que lên bàn cờ vua như ở Hình 20. Bạn ấy nói rằng: Không sử dụng thước đo, có thể chia cái que đó thành ba phần bằng nhau. Em hãy giải thích tại sao.

Luyện tập 1 trang 59 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Lời giải:

Luyện tập 1 trang 59 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Độ dài của cái thước là cạnh huyền của một tam giác vuông CED có hai cạnh góc vuông là EC và ED.

Ta có: ED có độ dài bằng 6 lần độ dài cạnh của một ô vuông. Nên ta có thể lấy hai điểm F, H sao cho chia đoạn ED thành ba đoạn, mỗi đoạn có độ dài bằng 2 lần độ dài cạnh của một ô vuông.

Từ F và H ta kẻ hai đường thẳng song song với cạnh EC cắt cạnh CDlần lượt tại G và I.

Theo định lí Thalès, ta chứng minh được DI = IG = GC (cùng bằng 13CD).

Vậy ta có thể chia được cái thước thành ba phần bằng nhau mà không sử dụng thước đo.

II. Ước lượng chiều cao

Giải Toán 8 trang 60 Tập 2

Luyện tập 2 trang 60 Toán 8 Tập 2: Người ta đo bóng của một cây và được các số đo ở Hình 23. Giả sử rằng các tia nắng song song với nhau, hãy tính độ cao x.

Luyện tập 2 trang 60 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Lời giải:

Luyện tập 2 trang 60 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Đoạn thẳng AB biểu thị cho độ cao của cây, đoạn thẳng AM và MB lần lượt biểu thị độ cao của thân và tán cây, đoạn thẳng AN và NC lần lượt biểu thị độ dài cái bóng của thân cây và tán cây, đoạn thẳng MN và BC lần lượt biểu thị cho các tia nắng.

Xét ∆ABC vớiMN // BC, ta có: AMMB=ANNC (định lí Thalès)

Suy ra 0,9x=1,52

Do đó x=0,921,5=1,2

Vậy độ cao x = 1,2 m.

Bài tập

Bài 1 trang 60 Toán 8 Tập 2: Để đo khoảng cách giữa hai vị trí A và B trong đó B không tới được, người ta tiến hành chọn các vị trí C, D, E như ở Hình 24 và đo được AC = 50m, CD = 20m, DE = 18m. Hỏi khoảng cách giữa hai vị trí A và B là bao nhiêu?

Bài 1 trang 60 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Lời giải:

Do DE ⊥ AC, AB ⊥ AC nên DE // AB.

Xét ∆ABC với DE // AB, ta có:

CDCA=DEAB (hệ quả của định lí Thalès)

Suy ra 2050=18AB

Suy ra AB=501820=45m.

Vậy khoảng cách giữa hai vị trí A và B là 45 m.

Giải Toán 8 trang 61 Tập 2

Bài 2 trang 61 Toán 8 Tập 2: Có thể gián tiếp đo chiều cao của một bức tuờng khá cao bằng dụng cụ đơn giản được không?

Bài 2 trang 61 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Hình 25 thể hiện cách đo chiều cao AB của một bức tường bằng các dụng cụ đơn giản gồm: hai cọc thẳng đứng (cọc Bài 2 trang 61 Toán 8 Tập 2 Cánh diều | Giải Toán 8 cố định; cọc Bài 2 trang 61 Toán 8 Tập 2 Cánh diều | Giải Toán 8 có thể di động được) và sợi dây FC. Cọc Bài 2 trang 61 Toán 8 Tập 2 Cánh diều | Giải Toán 8 có chiều cao DK = h. Các khoảng cách BC = a, DC = b đo được bằng thước dây thông dụng.

a) Em hãy cho biết người ta tiến hành đo đạc như thế nào?

b) Tính chiều cao AB theo h, a, b.

Lời giải:

a) Cách tiến hành:

⦁ Vì cọc 2 di động được nên di chuyển cọc Bài 2 trang 61 Toán 8 Tập 2 Cánh diều | Giải Toán 8 sao cho cọc Bài 2 trang 61 Toán 8 Tập 2 Cánh diều | Giải Toán 8 trùng với AB, cụ thể F trùng với A, E trùng với B. 

⦁ Lúc này cọc Bài 2 trang 61 Toán 8 Tập 2 Cánh diều | Giải Toán 8 song song với AB. Do đó, ta có tỉ lệ giữa chiều cao của cọc Bài 2 trang 61 Toán 8 Tập 2 Cánh diều | Giải Toán 8 và AB bằng với tỉ lệ giữa khoảng cách DC và BC. Từ đó ta tính được chiều cao AB của bức tường thông qua hệ quả của định lí Thalès.

b) Xét ∆ABC với AB // KD (D ∈ BC, K ∈ AC), ta có:

DKBA=DCBC (hệ quả định lí Thalès)

Suy ra AB=DKBCDC=hab

Vậy chiều cao AB=hab.

Bài 3 trang 61 Toán 8 Tập 2: Trong Hình 26, các thanh AA’, BB’, CC’, DD’ của giàn gỗ song song với nhau. Không sử dụng thước đo, hãy giải thích vì sao độ dài các đoạn AB, BC, CD lần lượt tỉ lệ với độ dài các đoạn A’B’, B’C’, C’D’.

Bài 3 trang 61 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Lời giải:

Bài 3 trang 61 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Xét ∆ECC’với DD’ // CC’, ta có: EDDC=ED'D'C' (định lí Thalès)

Suy ra EDED'=DCD'C' (1)

Xét ∆EBB’với DD’ // BB’, ta có: EDDB=ED'D'B' (định lí Thalès)

Suy ra EDED'=DBD'B' (2)

Từ (1) và(2) ta có DCD'C'=DBD'B'=DBDCD'B'D'C'=BCB'C' (4)

Xét ∆EAA’với DD’ // AA’, ta có: EDDA=ED'D'A' (định lí Thalès)

Suy ra EDED'=DAD'A' (3)

Từ (2) và (3) ta có DBD'B'=DAD'A'=DADBD'A'D'B'=ABA'B' (5)

Từ (4) và (5) ta có ABA'B'=BCB'C'=CDC'D'.

Bài 4 trang 61 Toán 8 Tập 2: Anh Thiện và chị Lương đứng ở hai phía bờ sông và muốn ước lượng khoảng cách giữa hai vị trí A, B ở hai bên bờ sông (Hình 27).

Bài 4 trang 61 Toán 8 Tập 2 Cánh diều | Giải Toán 8

•Anh Thiện chọn vị trí Cở trên bờ sông sao cho A, B, C thẳng hàng và đo được BC = 4m;

•Tiếp theo, anh Thiện xác định vị trí D, chị Lương xác định vị trí E sao cho D, B, E thẳng hàng, đồng thời BAE^=BCD^=90°;

•Anh Thiện đo được CD = 2m, chị Lương đo được AE = 12m.

Hãy tính khoảng cách giữa hai vị trí A và B.

Lời giải:

Ta có: AE ⊥ AC, CD ⊥ AC nên AE // CD.

Xét ∆ABE với AE // CD, ta có: ABBC=AECD (hệ quả của định lí Thalès)

Suy ra AB4=122

Do đó AB=1242=24.

Vậy khoảng cách AB là 24 m.

Xem thêm các bài giải SGK Toán lớp 8 Cánh diều hay, chi tiết khác:

Bài 1: Định lí Thalès trong tam giác

Bài 2: Ứng dụng của định lí Thalès trong tam giác

Bài 3: Đường trung bình của tam giác

Bài 4: Tính chất đường phân giác của tam giác

Bài 5: Tam giác đồng dạng

Đánh giá

0

0 đánh giá