Giải Toán 11 trang 88 Tập 2 Cánh diều

296

Với lời giải Toán 11 trang 88 Tập 2 chi tiết trong Bài 2: Đường thẳng vuông góc với mặt phẳng sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng

Bài 1 trang 88 Toán 11 Tập 2: Quan sát Hình 30 (hai cột của biển báo, mặt đường), cho biết hình đó gợi nên tính chất nào về quan hệ vuông góc giữa đường thẳng và mặt phẳng.

Bài 1 trang 88 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Lời giải:

Quan sát Hình 30 ta thấy a // b, a và b cùng vuông góc với (P). Qua đó, một số các tính chất về quan hệ vuông góc giữa đường thẳng và mặt phẳng được gợi ra như sau:

⦁ Cho hai đường thẳng song song. Một mặt phẳng vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng kia.

⦁ Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song với nhau.

Bài 2 trang 88 Toán 11 Tập 2: Cho hình chóp S.ABC. Gọi H là hình chiếu của S trên mặt phẳng (ABC).

a) Xác định hình chiếu của các đường thẳng SA, SB, SC trên mặt phẳng (ABC).

b) Giả sử BC ⊥ SA, CA ⊥ SB. Chứng minh rằng H là trực tâm của tam giác ABC và AB ⊥ SC.

Lời giải:

Bài 2 trang 88 Toán 11 Tập 2 | Cánh diều Giải Toán 11

a) Ta có: H là hình chiếu của S trên mặt phẳng (ABC); A ∈ (ABC).

Suy ra HA là hình chiếu của SA trên mặt phẳng (ABC).

Tương tự ta có HB, HC lần lượt là hình chiếu của SB và SC trên mặt phẳng (ABC).

b) Do H là hình chiếu của S trên mặt phẳng (ABC) nên SH ⊥ (ABC).

Mà AB, AC, BC đều nằm trên (ABC).

Từ đó ta có: SH ⊥ AB, SH ⊥ AC, SH ⊥ BC.

· Ta có: BC ⊥ SH, BC ⊥ SA và SH ∩ SA = S trong (SAH).

Suy ra BC ⊥ (SAH).

Mà AH ⊂ (SAH) nên BC ⊥ AH. (1)

· Ta có: AC ⊥ SB, AC ⊥ SH và SB ∩ SH = S trong (SBH).

Suy ra AC ⊥ (SBH).

Mà BH ⊂ (SBH) nên AC ⊥ BH. (2)

Từ (1) và (2) ta có H là trực tâm của tam giác ABC.

Suy ra AB ⊥ CH.

· Ta có: AB ⊥ CH, AB ⊥ SH và CH ∩ SH = H trong (SCH).

Suy ra AB ⊥ (SCH).

Mà SC ⊂ (SCH) nên AB ⊥ SC.

Bài 3 trang 88 Toán 11 Tập 2: Cho tứ diện ABCD có AB ⊥ (BCD), các tam giác BCD và ACD là những tam giác nhọn. Gọi H, K lần lượt là trực tâm của các tam giác BCD, ACD (Hình 31). Chứng minh rằng:

a) CD ⊥ (ABH);

b) CD ⊥ (ABK);

c) Ba đường thẳng AK, BH, CD cùng đi qua một điểm.

Bài 3 trang 88 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Lời giải:

Bài 3 trang 88 Toán 11 Tập 2 | Cánh diều Giải Toán 11

a) Ta có: AB ⊥ (BCD), CD ⊂ (BCD) nên AB ⊥ CD.

Do H là trực tâm của tam giác BCD nên BH ⊥ CD.

Ta có: CD ⊥ AB, CD ⊥ BH và AB ∩ BH = B trong (ABH).

Từ đó ta có: CD ⊥ (ABH).

b) Do K là trực tâm của tam giác ACD nên AK ⊥ CD.

Ta có: CD ⊥ AB, CD ⊥ AK và AB ∩ AK = A trong (ABK).

Từ đó ta có: CD ⊥ (ABK).

c) Theo tính chất “Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước” nên có duy nhất một mặt phẳng đi qua điểm A và vuông góc với CD.

Mà CD ⊥ (ABH), CD ⊥ (ABK).

Suy ra (ABH) ≡ (ABK).

Do: H là trực tâm của tam giác BCD nên BH giao với CD tại một điểm I;

       K là trực tâm của tam giác ACD nên AK giao với CD tại một điểm I’.

Mà CD cắt (ABHK) tại một điểm.

Do đó I và I’ trùng nhau hay AK, BH, CD cùng đi qua một điểm.

Bài 4 trang 88 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy là hình bình hành. Tam giác ABC nhọn có trực tâm H là hình chiếu của S trên (ABCD). Chứng minh rằng:

a) SA ⊥ AD;

b) SC ⊥ CD.

Lời giải:

Bài 4 trang 88 Toán 11 Tập 2 | Cánh diều Giải Toán 11

a) Ta có H là trực tâm của tam giác ABC nên AH ⊥ BC.

Hơn nữa BC // AD (do ABCD là hình bình hành).

Suy ra AH ⊥ AD.

Lại có H là hình chiếu của S trên (ABCD) nên HA là hình chiếu của SA trên (ABCD).

Do đó, theo định lí ba đường vuông góc ta có AD ⊥ SA hay SA ⊥ AD.

b) Ta có H là trực tâm của tam giác ABC nên CH ⊥ AB.

Hơn nữa AB // CD (do ABCD là hình bình hành).

Suy ra HC ⊥ CD.

Lại có H là hình chiếu của S trên (ABCD) nên HC là hình chiếu của SC trên (ABCD).

Do đó, theo định lí ba đường vuông góc ta có CD ⊥ SC hay SC ⊥ CD.

Bài 5 trang 88 Toán 11 Tập 2: Cho hình chóp S.ABCD có SA ⊥ (ABC), BC ⊥ AB. Lấy hai điểm M, N lần lượt là trung điểm của SB, SC và điểm P nằm trên cạnh SA. Chứng minh rằng tam giác MNP là tam giác vuông.

Lời giải:

Bài 5 trang 88 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Do SA ⊥ (ABC) hay SA ⊥ (ABCD) nên AB là hình chiếu của SB trên mặt phẳng (ABCD).

Mà BC ⊥ AB nên theo định lí ba đường vuông góc ta có BC ⊥ SB.

Xét ∆SBC có: M, N lần lượt là trung điểm của SB và SC nên MN là đường trung bình của ∆SBC. Do đó MN // BC.

Mà BC ⊥ SB nên SB ⊥ MN.

Do SA ⊥ (ABCD) và BC ⊂ (ABCD) suy ra SA ⊥ BC.

Mà MN // BC nên SA ⊥ MN.

Ta có: MN ⊥ SB, MN ⊥ SA và SB ∩ SA = S trong (SAB).

Suy ra MN ⊥ (SAB).

Hơn nữa PM ⊂ (SAB) nên MN ⊥ PM hay tam giác MNP là tam giác vuông tại M.

Đánh giá

0

0 đánh giá