Giải SGK Toán 11 Bài 4 (Cánh diều): Hai mặt phẳng vuông góc

2.1 K

Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 11 Bài 4: Hai mặt phẳng vuông góc chi tiết sách Toán 11 Tập 2 Cánh diều giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 4: Hai mặt phẳng vuông góc

Giải Toán 11 trang 95 Tập 2

Câu hỏi khởi động trang 95 Toán 11 Tập 2: Để công trình xây dựng được an toàn và bền vững, người ta thường xây tường nhà vuông góc với nền nhà (Hình 44).

Câu hỏi khởi động trang 95 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Hình ảnh tường nhà vuông góc với nền nhà gợi nên khái niệm nào trong hình học?

Lời giải:

Sau bài học này, chúng ta sẽ giải quyết được câu hỏi trên như sau:

Hình ảnh tường nhà vuông góc với nền nhà gợi nên khái niệm hai mặt phẳng vuông góc.

I. Định nghĩa

Hoạt động 1 trang 95 Toán 11 Tập 2: Hai vách ngăn tủ trong Hình 45 gợi nên hình ảnh hai mặt phẳng (P) và (Q) cắt nhau tạo nên bốn góc nhị diện. Các góc nhị diện đó có phải là góc nhị diện vuông hay không?

Hoạt động 1 trang 95 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Lời giải:

Hai vách ngăn tủ được thiết kế vuông góc với nhau nên dễ dàng thấy được các góc nhị diện được tạo bởi hai mặt phẳng (P) và (Q) là những góc nhị diện vuông.

Luyện tập 1 trang 95 Toán 11 Tập 2: Nêu ví dụ trong thực tiễn minh họa hình ảnh hai mặt phẳng vuông góc.

Lời giải:

Những ví dụ trong thực tiễn minh hoạ hình ảnh hai mặt phẳng vuông góc là: Mặt tường vuông góc với sàn nhà, mặt ngang vuông góc với mặt đứng của bậc thang, …

II. Điều kiện để hai mặt phẳng vuông góc

Giải Toán 11 trang 96 Tập 2

Hoạt động 2 trang 96 Toán 11 Tập 2: Nền nhà, cánh cửa và mép cánh cửa ở Hình 48 gợi nên hình ảnh mặt phẳng (P), mặt phẳng (Q) và đường thẳng a nằm trên mặt phẳng (P). Quan sát Hình 48 và cho biết:

a) Vị trí tương đối của đường thẳng a và mặt phẳng (Q);

b) Hai mặt phẳng (P) và (Q) có vuông góc với nhau không.

Hoạt động 2 trang 96 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Lời giải:

Quan sát Hình 48 ta thấy:

a) Đường thẳng a vuông góc với mặt phẳng (Q).

b) Hai mặt phẳng (P) và (Q) có vuông góc với nhau.

Giải Toán 11 trang 97 Tập 2

Luyện tập 2 trang 97 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình thoi, SA ⊥ (ABCD). Chứng minh rằng (SAC) ⊥ (SBD).

Lời giải:

Luyện tập 2 trang 97 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Ta có: SA ⊥ (ABCD) và BD ⊂ (ABCD) nên SA ⊥ BD.

Vì ABCD là hình thoi nên BD ⊥ AC.

Ta có: BD ⊥ SA, BD ⊥ AC và SA ∩ AC = A trong (SAC).

Suy ra BD ⊥ (SAC).

Mà BD ⊂ (SBD) nên (SAC) ⊥ (SBD).

III. Tính chất

Hoạt động 3 trang 97 Toán 11 Tập 2: Cho hình chóp S.OAB thoả mãn (AOS) ⊥ (AOB), AOS^=AOB^=90° (Hình 51)

Hoạt động 3 trang 97 Toán 11 Tập 2 | Cánh diều Giải Toán 11

a) Giao tuyến của hai mặt phẳng (AOS) và (AOB) là đường thẳng nào?

b) SO có vuông góc với giao tuyến của hai mặt phẳng (AOS) và (AOB) hay không?

c) SO có vuông góc với mặt phẳng (AOB) hay không?

Lời giải:

a) Ta có: A ∈ (AOS) ∩ (AOB);

               O ∈ (AOS) ∩ (AOB).

Suy ra AO = (AOS) ∩ (AOB).

Vậy giao tuyến của hai mặt phẳng (AOS) và (AOB) là đường thẳng AO.

b) Ta có AOS^=90° nên SO ⊥ AO.

Mà AO là giao tuyến của hai mặt phẳng (AOS) và (AOB).

Vậy SO vuông góc với giao tuyến của hai mặt phẳng (AOS) và (AOB).

c) Vì AOB^=90° nên AO ⊥ OB.

Ta có: AO ⊥ OB, AO ⊥ SO và OB ∩ SO = O ∈ AO.

Suy ra SOB^ là góc phẳng nhị diện của góc nhị diện [S, AO, B].

Vì (AOS) ⊥ (AOB) nên SOB^=90°.

Ta có: SO ⊥ OA, SO ⊥ OB (do SOB^=90°);

           OA ∩ OB = O trong (AOB).

Suy ra SO ⊥ (AOB).

Vậy SO vuông góc với mặt phẳng (AOB).

Luyện tập 3 trang 97 Toán 11 Tập 2: Cho tứ diện ABCD có (ABD) ⊥ (BCD) và CD ⊥ BD. Chứng minh rằng tam giác ACD vuông.

Lời giải:

Luyện tập 3 trang 97 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Vì B ∈ (ABD) ∩ (BCD);

     D ∈ (ABD) ∩ (BCD).

Suy ra BD = (ABD) ∩ (BCD).

Ta có: (ABD) ⊥ (BCD);

           (ABD) ∩ (BCD) = BD;

           CD ⊂ (BCD) và CD ⊥ BD.

Suy ra CD ⊥ (ABD).

Mà AD ⊂ (ABD) nên CD ⊥ AD.

Vậy tam giác ACD vuông tại D.

Giải Toán 11 trang 98 Tập 2

Hoạt động 4 trang 98 Toán 11 Tập 2: Trong Hình 54, hai bìa của cuốn sách gợi nên hình ảnh hai mặt phẳng vuông góc với mặt bàn. Hãy dự đoán xem gáy sách có vuông góc với mặt bàn hay không.

Hoạt động 4 trang 98 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Lời giải:

Hoạt động 4 trang 98 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Hai bìa của cuốn sách gợi nên hình ảnh hai mặt phẳng vuông góc với mặt bàn. Khi đó đường thẳng đi qua gáy sách chính là giao tuyến của hai mặt phẳng đó.

Do bìa sách có dạng hình chữ nhật nên gáy sách AB sẽ vuông góc với mép dưới của sách là BC và BD

Mà BC và BD cắt nhau tại B nằm trong mặt phẳng bàn (là mp(BC, BD)).

Do đó AB vuông góc với mặt phẳng bàn.

Dự đoán: gáy sách vuông góc với mặt bàn.

Giải Toán 11 trang 99 Tập 2

Luyện tập 4 trang 99 Toán 11 Tập 2: Cho hình chóp S.ABC có SA ⊥ SB, SB ⊥ SC, SC ⊥ SA. Chứng minh rằng:

a) (SAB) ⊥ (SBC);

b) (SBC) ⊥ (SCA);

c) (SCA) ⊥ (SAB).

Lời giải:

Luyện tập 4 trang 99 Toán 11 Tập 2 | Cánh diều Giải Toán 11

a) Ta có: SA ⊥ SB, SA ⊥ SC;

               SB ∩ SC = S trong (SBC).

Suy ra SA ⊥ (SBC).

Mà SA ⊂ (SAB).

Từ đó ta có (SAB) ⊥ (SBC).

b) Ta có: SA ⊥ (SBC) (theo câu a) và SA ⊂ (SCA) nên (SBC) ⊥ (SCA).

c) Ta có: SB ⊥ SA, SB ⊥ SC;

               SA ∩ SC = S trong (SCA).

Suy ra SB ⊥ (SCA).

Mà SB ⊂ (SAB).

Từ đó ta có (SCA) ⊥ (SAB).

Bài tập

Bài 1 trang 99 Toán 11 Tập 2: Quan sát ba mặt phẳng (P), (Q), (R) ở Hình 57, chỉ ra hai cặp mặt phẳng mà mỗi cặp gồm hai mặt phẳng vuông góc với nhau. Hãy sử dụng kí hiệu để viết những kết quả đó.

Bài 1 trang 99 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Lời giải:

Từ hình ảnh ta thấy hai cặp mặt phẳng vuông góc với nhau là (P) và (R), (Q) và (R).

⦁ Hai mặt phẳng (P) và (R) vuông góc với nhau kí hiệu là: (P) ⊥ (R).

⦁ Hai mặt phẳng (Q) và (R) vuông góc với nhau kí hiệu là: (Q) ⊥ (R).

Bài 2 trang 99 Toán 11 Tập 2: Chứng minh: Nếu hai mặt phẳng vuông góc với nhau thì mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.

Lời giải:

Bài 2 trang 99 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Cho hai mặt phẳng (P) và (Q) vuông góc với nhau.

Ta cần chứng minh rằng tồn tại một đường thẳng a nằm trong mặt phẳng (P) sao cho đường thẳng a vuông góc với mặt phẳng (Q).

Thật vậy, ta lấy:

⦁ d là giao tuyến của hai mặt phẳng  (P) và (Q);

⦁ a là đường thẳng nằm trong mặt phẳng (P) sao cho a ⊥ d;

· O là giao điểm của đường thẳng a và mặt phẳng (Q).

Do hai mặt phẳng (P) và (Q) cùng chứa điểm O nên hai mặt phẳng đó cắt nhau theo giao tuyến d đi qua O.

Trong mặt phẳng (Q), qua O kẻ đường thẳng b vuông góc với d.

Như vậy ta có: d là cạnh của góc nhị diện [P, d, Q];

                         a ⊂ (P) và a ⊥ d tại O (với O ∈ d);

                         b ⊂ (Q) và b ⊥ d tại O (với O ∈ d);

Suy ra aOb^ là góc phẳng nhị diện của góc nhị diện [P, d, Q].

Mặt khác (P) ⊥ (Q) nên góc nhị diện [P, d, Q] vuông hay aOb^=90°.

Suy ra a ⊥ b.

Ta có: a ⊥ d, a ⊥ b và d ∩ b = O trong (Q).

Suy ra a ⊥ (Q).

Vậy nếu hai mặt phẳng vuông góc với nhau thì mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.

Bài 3 trang 99 Toán 11 Tập 2: Chứng minh các định lí sau:

a) Nếu hai mặt phẳng (phân biệt) cùng vuông góc với mặt phẳng thứ ba thì song song với nhau hoặc cắt nhau theo một giao tuyến vuông góc với mặt phẳng thứ ba đó;

b) Cho hai mặt phẳng song song. Nếu một mặt phẳng vuông góc với một trong hai

mặt phẳng đó thì vuông góc với mặt phẳng còn lại.

Lời giải:

a)

Bài 3 trang 99 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Giả sử ta có: (P) ⊥ (R), (Q) ⊥ (R), gọi a = (P) ∩ (R), b = (Q) ∩ (R).

Mà (P) và (Q) là hai mặt phẳng phân biệt nên a và b không trùng nhau.

Hơn nữa: a và b cùng nằm trong (R), nên xảy ra hai trường hợp:

⦁ Nếu a // b, mà a ⊂ (P), b ⊂ (Q) thì suy ra (P) // (Q).

⦁ Nếu a cắt b, mà a ⊂ (P) và b ⊂ (Q), thì ta gọi c = (P) ∩ (Q).

Do (P) ⊥ (R), (Q) ⊥ (R) và c = (P) ∩ (Q) nên suy ra c ⊥ (R).

b)

Bài 3 trang 99 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Giả sử có ba mặt phẳng (P), (Q), (R) thỏa mãn (P) // (Q) và (R) ⊥ (P). Ta cần chứng minh (R) ⊥ (Q).

Gọi a = (P) ∩ (R), lấy d ⊂ (R) sao cho a ⊥ d.

Ta có: (R) ⊥ (P), a = (R) ∩ (P), d ⊂ (R) và a ⊥ d, suy ra d ⊥ (P).

Mà (P) // (Q), d ⊂ (R) nên d ⊥ (Q).

Suy ra (Q) ⊥ (R).

Bài 4 trang 99 Toán 11 Tập 2: Cho một đường thẳng không vuông góc với mặt phẳng cho trước. Chứng minh rằng tồn tại duy nhất một mặt phẳng chứa đường thẳng đó và vuông góc với mặt phẳng đã cho.

Lời giải:

Cho đường thẳng d không vuông góc với mặt phẳng (P). Ta cần chứng minh: tồn tại duy nhất mặt phẳng (Q) vuông góc với (P) và chứa d.

Chứng minh tính tồn tại mặt phẳng (Q):

· Xét trường hợp d cắt (P) tại A.

Bài 4 trang 99 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Lấy M ∈ d sao cho M ≠ A. Vẽ đường thẳng a đi qua M sao cho a ⊥ (P).

Suy ra d ∩ a = M.

Khi đó hai đường thẳng a và d xác định mặt phẳng (Q) hay mặt phẳng (Q) chứa hai đường thẳng a và d.

Vì a ⊥ (P), a ⊂ (Q) nên ta có (P) ⊥ (Q).

· Xét trường hợp d ⊂ (P) hoặc d // (P).

Bài 4 trang 99 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Lấy M ∈ d. Vẽ đường thẳng a đi qua M sao cho a ⊥ (P).

Suy ra d ∩ a = M.

Khi đó hai đường thẳng a và d xác định mặt phẳng (Q) hay mặt phẳng (Q) chứa hai đường thẳng a và d.

Vì a ⊥ (P), a ⊂ (Q) nên ta có (P) ⊥ (Q).

Chứng minh tính duy nhất mặt phẳng (Q):

Giả sử tồn tại mặt phẳng (Q’) khác (Q) sao cho d ⊂ (Q’) và (P) ⊥ (Q’).

Ta thấy: d = (Q’) ∩ (Q).

Mà (P) ⊥ (Q), (P) ⊥ (Q’) nên suy ra d ⊥ (P).

Mâu thuẫn với giả thiết d không vuông góc với (P).

Như vậy, tồn tại duy nhất mặt phẳng (Q) sao cho d ⊂ (Q) và (P) ⊥ (Q).

Bài 5 trang 99 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, mặt phẳng (SAB) vuông góc với mặt đáy, tam giác SAB vuông cân tại S. Gọi M là trung điểm của AB. Chứng minh rằng:

a) SM ⊥ (ABCD);

b) AD ⊥ (SAB);

c) (SAD) ⊥ (SBC).

Lời giải:

Bài 5 trang 99 Toán 11 Tập 2 | Cánh diều Giải Toán 11

a) Xét tam giác SAB vuông cân tại S có: SM là đường trung tuyến (do M là trung điểm của AB) nên SM ⊥ AB.

Do A ∈ (SAB) ∩ (ABCD);

      B ∈ (SAB) ∩ (ABCD).

Suy ra AB = (SAB) ∩ (ABCD).

Ta có: (SAB) ⊥ (ABCD);

           SM ⊂ (SAB), SM ⊥ AB;

           (SAB) ∩ (ABCD) = AB.

Từ đó, ta có SM ⊥ (ABCD).

b) Do SM ⊥ (ABCD) và AD ⊂ (ABCD) nên SM ⊥ AD.

Vì ABCD là hình chữ nhật nên AD ⊥ AB.

Ta có: AD ⊥ AB, AD ⊥ SM và AB ∩ SM = M trong (SAB).

Suy ra AD ⊥ (SAB).

c) Do AD ⊥ (SAB) và SB ⊂ (SAB) nên AD ⊥ SB.

Vì tam giác SAB vuông cân tại S nên SA ⊥ SB.

Ta có: SB ⊥ AD, SB ⊥ SA và AD ∩ SA = A trong (SAD).

Suy ra SB ⊥ (SAD).

Hơn nữa SB ⊂ (SBC) nên (SBC) ⊥ (SAD).

Bài 6 trang 99 Toán 11 Tập 2: Cho hình lăng trụ ABC.A’B’C’ có tất cả các cạnh cùng bằng a, hai mặt phẳng (A’AB) và (A’AC) cùng vuông góc với (ABC).

a) Chứng minh rằng AA’ ⊥ (ABC).

b) Tính số đo góc giữa đường thẳng A’B và mặt phẳng (ABC).

Lời giải:

Bài 6 trang 99 Toán 11 Tập 2 | Cánh diều Giải Toán 11

a) Do A ∈ (A’AB) ∩ (A’AC) và A’ ∈ (A’AB) ∩ (A’AC).

Suy ra AA’ = (A’AB) ∩ (A’AC).

Ta có: (A’AB) ⊥ (ABC);

           (A’AC) ⊥ (ABC);

           (A’AB) ∩ (A’AC) = AA’.

Do đó AA’ ⊥ (ABC).

b) Do AA’ ⊥ (ABC) nên AB là hình chiếu của A’B trên (ABC).

Suy ra góc giữa đường thẳng A’B và mặt phẳng (ABC) bằng A'BA^.

Vì AA’ ⊥ (ABC) và AB ⊂ (ABC) nên AA’ ⊥ AB.

Xét tam giác A’AB vuông tại A có:

tanABA'^=AA'AB=aa=1ABA'^=45°.

Vậy góc giữa đường thẳng A’B và mặt phẳng (ABC) bằng 45°.

Xem thêm các bài giải SGK Toán lớp 11 Cánh diều hay, chi tiết khác:

Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện

Bài 4: Hai mặt phẳng vuông góc

Bài 5: Khoảng cách

Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối

Bài tập cuối chương 8

Lý thuyết Hai mặt phẳng vuông góc

1. Định nghĩa

Hai mặt phẳng cắt nhau tạo nên bốn góc nhị diện. Nếu một trong các góc nhị diện đó là hai góc nhị diện vuông thì hai mặt phẳng đã cho gọi là vuông góc với nhau.

Ví dụ: Hai mặt phẳng (P) và (Q) cắt nhau tạo nên bốn góc nhị diện. Nếu một trong bốn góc nhị diện đó là góc nhị diện vuông thì vta nói (P) vuông góc với (Q), kí hiệu là (P)(Q) hoặc (Q)(P).

Lý thuyết Hai mặt phẳng vuông góc (Cánh diều 2024) hay, chi tiết | Toán lớp 11 (ảnh 1)

2. Điều kiện để hai mặt phẳng vuông góc

Nếu mặt phẳng này chứa một đường thẳng mà đường thẳng đó vuông góc với mặt phẳng kia thì hai mặt phẳng đó vuông góc với nhau.

3. Tính chất

- Tính chất 1: Nếu hai mặt phẳng vuông góc với nhau thì bất cứ đường thẳng nào nằm trong mặt phẳng này và vuông góc với giao tuyến cùng vuông góc với mặt phẳng kia.

- Tính chất 2: Nếu hai mặt phẳng cắt nhau và cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba đó.

Nhận xét:

- Cho hai mặt phẳng (P) và (Q) vuông góc với nhau. Nếu qua một điểm trong mặt phẳng (P) ta dựng đường thẳng vuông góc với mặt phẳng (Q) thì đường thẳng này nằm trong mặt phẳng (P).

- Nếu hai mặt phẳng vuông góc với nhau thì hình chiếu của một đường thẳng nằm trong mặt phẳng này trên mặt phẳng kia đều trùng hoặc nằm trên giao tuyến.

- Ta có thể chứng minh đường thẳng vuông góc với mặt phẳng bằng cách sử dụng Tính chất 1.

Đánh giá

0

0 đánh giá