Với giải Bài 43 trang 104 SBT Toán lớp 11 Cánh diều chi tiết trong Bài 4: Hai mặt phẳng vuông góc giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:
Giải SBT Toán 11 Bài 4: Hai mặt phẳng vuông góc
Bài 43 trang 104 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có ABCD là hình vuông, tam giác SAB vuông tại S và nằm trong mặt phẳng vuông góc với (ABCD). Chứng minh rằng:
a) (SAD) ⊥ (SAB);
b) (SBC) ⊥ (SAB);
c) (SAD) ⊥ (SBC).
Lời giải:
a) Gọi H là hình chiếu của S trên AB.
Ta có: (SAB) ⊥ (ABCD), (SAB) ∩ (ABCD) = AB và SH ⊂ (SAB), SH ⊥ AB
Suy ra SH ⊥ (ABCD).
Mà AD ⊂ (ABCD) nên SH ⊥ AD.
Do ABCD là hình vuông nên ta có AD ⊥ AB.
Ta có: AD ⊥ SH, AD ⊥ AB và SH ∩ AB = H trong (SAB)
Suy ra AD ⊥ (SAB).
Hơn nữa AD ⊂ (SAD) nên (SAD) ⊥ (SAB).
b) Vì SH ⊥ (ABCD) và BC ⊂ (ABCD) nên SH ⊥ BC.
Do ABCD là hình vuông nên ta có BC ⊥ AB.
Ta có: BC ⊥ SH, BC ⊥ AB và SH ∩ AB = H trong (SAB)
Suy ra BC ⊥ (SAB).
Hơn nữa BC ⊂ (SBC) nên (SBC) ⊥ (SAB).
c) Vì AD ⊥ (SAB) và SB ⊂ (SAB) nên AD ⊥ SB.
Theo giả thiết: tam giác SAB vuông tại S nên ta có SB ⊥ SA.
Ta có: SB ⊥ AD, SB ⊥ SA và AD ∩ SA = A trong (SAD)
Suy ra SB ⊥ (SAD).
Hơn nữa SB ⊂ (SBC) nên (SAD) ⊥ (SBC).
Xem thêm lời giải sách bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Bài 33 trang 103 SBT Toán 11 Tập 2: Cho hai mặt phẳng (P), (Q) cắt nhau và đường thẳng a nằm trong (P). Phát biểu nào sau đây là sai....
Bài 34 trang 103 SBT Toán 11 Tập 2: Cho hai mặt phẳng (P), (Q) vuông góc và cắt nhau theo giao tuyến d, đường thẳng a song song với (P). Phát biểu nào sau đây đúng?....
Bài 35 trang 103 SBT Toán 11 Tập 2: Hai mặt phẳng cùng vuông góc với mặt phẳng thứ ba thì:...
Bài 36 trang 103 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có hai mặt (SAB) và (SAC) cùng vuông góc với mặt phẳng (ABCD). Khi đó mặt phẳng (ABCD) cùng vuông góc với đường thẳng:...
Bài 37 trang 104 SBT Toán 11 Tập 2: Hình 26 gợi nên hình ảnh một số cặp mặt phẳng vuông góc với nhau. Hãy chỉ ra 2 cặp mặt phẳng vuông góc với nhau....
Bài 38 trang 104 SBT Toán 11 Tập 2: Chứng minh các định lí sau:...
Bài 39 trang 104 SBT Toán 11 Tập 2: Cho hình lăng trụ ABC.A’B’C’ có AA’ ⊥ (ABC), tam giác ABC cân tại A. Gọi M là trung điểm của BC. Chứng minh rằng (MAA’) ⊥ (BCC’B’)....
Bài 40 trang 104 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có SA ⊥ (ABCD) và ABCD là hình chữ nhật. Chứng minh rằng:...
Bài 41 trang 104 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có ABCD là hình thoi, (SAC) ⊥ (ABCD), (SBD) ⊥ (ABCD). Chứng minh rằng (SAC) ⊥ (SBD)......
Bài 42 trang 104 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có Gọi H là trực tâm tam giác ABC.Chứng minh rằng (SAH) ⊥ (ABC)....
Bài 43 trang 104 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có ABCD là hình vuông, tam giác SAB vuông tại S và nằm trong mặt phẳng vuông góc với (ABCD). Chứng minh rằng:....
Bài 44 trang 104 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có ABCD là hình chữ nhật, (SAC) ⊥ (ABCD). Gọi M là trung điểm của AD, (SBM) ⊥ (ABCD). Giả sử SA = 5a, AB = 3a, AD = 4a và góc giữa đường thẳng SA và mặt phẳng (ABCD) bằng φ. Tính cosφ....
Xem thêm các bài giải SBT Toán lớp 11 Cánh diều hay, chi tiết khác: