Với giải Bài 42 trang 104 SBT Toán lớp 11 Cánh diều chi tiết trong Bài 4: Hai mặt phẳng vuông góc giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:
Giải SBT Toán 11 Bài 4: Hai mặt phẳng vuông góc
Bài 42 trang 104 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có Gọi H là trực tâm tam giác ABC.Chứng minh rằng (SAH) ⊥ (ABC).
Lời giải:
Do H là trực tâm của tam giác ABC nên AH ⊥ BC.
Do nên ta có: SA ⊥ SB và SA ⊥ SC.
Ta có: SA ⊥ SB, SA ⊥ SC và SB ∩ SC = S trong (SBC)
Suy ra SA ⊥ (SBC).
Mà BC ⊂ (SBC) nên SA ⊥ BC.
Ta có: BC ⊥ AH, BC ⊥ SA và AH ∩ SA = A trong (SAH)
Suy ra BC ⊥ (SAH).
Hơn nữa BC ⊂ (ABC).
Từ đó ta có (SAH) ⊥ (ABC).
Xem thêm lời giải sách bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Bài 35 trang 103 SBT Toán 11 Tập 2: Hai mặt phẳng cùng vuông góc với mặt phẳng thứ ba thì:...
Bài 38 trang 104 SBT Toán 11 Tập 2: Chứng minh các định lí sau:...
Xem thêm các bài giải SBT Toán lớp 11 Cánh diều hay, chi tiết khác: