Với giải Bài 39 trang 104 SBT Toán lớp 11 Cánh diều chi tiết trong Bài 4: Hai mặt phẳng vuông góc giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:
Giải SBT Toán 11 Bài 4: Hai mặt phẳng vuông góc
Bài 39 trang 104 SBT Toán 11 Tập 2: Cho hình lăng trụ ABC.A’B’C’ có AA’ ⊥ (ABC), tam giác ABC cân tại A. Gọi M là trung điểm của BC. Chứng minh rằng (MAA’) ⊥ (BCC’B’).
Lời giải:
Vì tam giác ABC cân tại A, AM là đường trung tuyến nên AM ⊥ BC.
Ta có: AA’ ⊥ (ABC), AA’ // BB’, suy ra BB’ ⊥ (ABC).
Mà AM ⊂ (ABC) nên BB’ ⊥ AM.
Ta có: AM ⊥ BC, AM ⊥ BB’, BC ∩ BB’ = B trong (BCC’B’).
Từ đó suy ra AM ⊥ (BCC’B’).
Mà AM ⊂ (MAA’) nên (MAA’) ⊥ (BCC’B’).
Xem thêm lời giải sách bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Bài 35 trang 103 SBT Toán 11 Tập 2: Hai mặt phẳng cùng vuông góc với mặt phẳng thứ ba thì:...
Bài 38 trang 104 SBT Toán 11 Tập 2: Chứng minh các định lí sau:...
Xem thêm các bài giải SBT Toán lớp 11 Cánh diều hay, chi tiết khác: