Giải mỗi bất phương trình sau: a) 0,2 ^ (2x+1) >1

567

Với giải Bài 63 trang 50 SBT Toán lớp 11 Cánh diều chi tiết trong Bài 4: Phương trình, bất phương trình mũ và lôgarit giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 4: Phương trình, bất phương trình mũ và lôgarit

Bài 63 trang 50 SBT Toán 11 Tập 2Giải mỗi bất phương trình sau:

Bài 63 trang 50 SBT Toán 11 Tập 2

Lời giải:

a) (0,2)2x + 1 > 1 ⇔ (0,2)2x + 1 > 0,20

⇔ 2x + 1 < 0 (do 0 < 0,2 < 1)

⇔ x<12 .

Vậy bất phương trình có tập nghiệm ;12 .

b) 272x19332x91

33..2x32136x32

6x2(do 3 > 1)

x13.

Vậy bất phương trình có tập nghiệm ;13 .

c) 12x25x+4421x25x+422

2x2+5x422

⇔ –x2 + 5x – 4 ≥ 2 (vì 2 > 0)

⇔ –x2 + 5x – 6 ≥ 0

⇔ 2 ≤ x ≤ 3.

Vậy bất phương trình có tập nghiệm [2; 3].

d) 125x+1<1252x52x+1<532x

⇔ 5–2x – 2 < 56x ⇔ –2x – 2 < 6x (do 5 > 1)

8x<2x>14

Vậy bất phương trình có tập nghiệm 14;+ .

e) 213x2<2+14x

Bài 63 trang 50 SBT Toán 11 Tập 2

⇔ 2 – 3x < 4 – x

⇔ –2x < 2 ⇔ x > –1.

Vậy bất phương trình có tập nghiệm (–1; +∞).

Bài 63 trang 50 SBT Toán 11 Tập 2

⇔ x – 2x2 > 2x – 6

⇔ – 2x2 – x + 6 > 0

2<x<32.

Vậy bất phương trình có tập nghiệm 2;32.

Đánh giá

0

0 đánh giá