Cho hàm số f(x) = cos^2x + cos^(2pi/3 + x) + cos^2(2pi/3 - x)

807

Với giải Bài 9.12 trang 60 SBT Toán lớp 11 Kết nối tri thức chi tiết trong Bài 32: Các quy tắc tính đạo hàm giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán lớp 11 Bài 32: Các quy tắc tính đạo hàm

Bài 9.12 trang 60 SBT Toán 11 Tập 2: Cho hàm số fx=cos2x+cos22π3+x+cos22π3x . Tính đạo hàm f'(x) và chứng tỏ f'(x) = 0 với mọi x ℝ.

Lời giải:

f'x=cos2x+cos22π3+x+cos22π3x'

=cos2x'+cos22π3+x'+cos22π3x'

=2cosxcosx'+2cos2π3+xcos2π3+x'+2cos2π3xcos2π3x'

=2cosxsinx2cos2π3+xsin2π3+x+2cos2π3xsin2π3x

=sin2xsin4π3+2x+sin4π32x

=sin2xsinπ+π3+2x+sinπ+π32x

=sin2x+sinπ3+2xsinπ32x

= -sin2x + 2cosπ3sin2x = -sin2x + sin2x = 0.

Vậy f'(x) = 0 với mọi x ℝ.

Đánh giá

0

0 đánh giá