Cho hình chóp S.ABC có SA vuông góc (ABC), tam giác ABC nhọn

3 K

Với giải Bài 7.11 trang 28 SBT Toán lớp 11 Kết nối tri thức chi tiết trong Bài 23: Đường thẳng vuông góc với mặt phẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán lớp 11 Bài 23: Đường thẳng vuông góc với mặt phẳng

Bài 7.11 trang 28 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có SA (ABC), tam giác ABC nhọn. Gọi H, K lần lượt là trực tâm của tam giác ABC và SBC. Chứng minh rằng:

a) BC (SAH) và các đường thẳng AH, BC, SK đồng quy;

b) SB (CHK) và HK (SBC).

Lời giải:

Cho hình chóp S.ABC có SA vuông góc (ABC), tam giác ABC nhọn

a) Vì H là trực tâm tam giác ABC nên BC AH,

mà SA (ABC) nên SA BC. Do đó BC (SAH).

Gọi M là giao điểm của AH và BC, ta có BC (SAM) nên BC SM.

Mặt khác, K là trực tâm của tam giác SBC nên SM đi qua K.

Do đó AH, BC, SK đồng quy.

b) Vì SA (ABC) nên SA CH, mà CH AB, suy ra CH (SAB).

Do đó CH SB.

Lại có SB CK nên SB (CHK).

Xét tam giác SBC, K là trực tâm nên BK SC.

Vì SA (ABC) nên SA BH mà BH CA nên BH (SAC), suy ra BH SC.

Vì BK SC và BH SC nên SC (BHK), suy ra SC HK.

Mà SB HK (vì SB (CHK)). Do đó HK (SBC).

Đánh giá

0

0 đánh giá