Giải SBT Toán 11 trang 15 Tập 1 Cánh diều

147

Với lời giải SBT Toán 11 trang 15 Tập 1 chi tiết trong Bài 2: Các phép biến đổi lượng giác sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 2: Các phép biến đổi lượng giác

Bài 18 trang 15 SBT Toán 11 Tập 1Chọn đẳng thức đúng trong các đẳng thức sau:

A. sin4x+cos4x=3cos4x4 .

B. sin4x+cos4x=3+cos4x4 .

C. sin4x+cos4x=3+cos4x2 .

D. sin4x+cos4x=3cos4x2 .

Lời giải:

Đáp án đúng là: B

Ta có sin4 x + cos4 x = 1 – 2sin2 x cos2 x (theo Bài 9a)

= 1 – 2 (sin x cos x)2 12sin2x22=12.sin22x4=121cos22x4

=122cos22x4=42+2cos22x4=3+2cos22x14=3+cos4x4.

Vậy sin4x+cos4x=3+cos4x4 .

Bài 19 trang 15 SBT Toán 11 Tập 1Rút gọn biểu thức cos(120° – x) + cos(120° + x) – cos x ta được kết quả là:

A. – 2cos x.

B. – cos x.

C. 0.

D. sin x – cos x.

Lời giải:

Đáp án đúng là: A

Ta có cos(120° – x) + cos(120° + x) – cos x

= cos 120° cos x + sin 120° sin x + cos 120° cos x – sin 120° sin x – cos x

= 2 cos 120° cos x – cos x

= 2 . 12  . cos x – cos x

= – cos x – cos x

= – 2 cos x.

Bài 20 trang 15 SBT Toán 11 Tập 1Nếu cosa=34  thì giá trị của cosa2cosa2  bằng:

A. 2316 .

B. 78 .

C. 716 .

D. 238 .

Lời giải:

Đáp án đúng là: B

Ta có cosa2cosa2=cos2a2=1+cos2.a22=1+cosa2=1+342=78 .

Bài 21 trang 15 SBT Toán 11 Tập 1Nếu cosa=53  thì giá trị của biểu thức A=4sina+π3sinaπ3  bằng:

A. 119 .

B. 119 .

C. 19 .

D. 19 .

Lời giải:

Đáp án đúng là: A

Ta có A=4sina+π3sinaπ3

 Bài 21 trang 15 SBT Toán 11 Tập 1

=2cos2acos2π3

 Bài 21 trang 15 SBT Toán 11 Tập 1

Bài 22 trang 15 SBT Toán 11 Tập 1Nếu cosa=13,  sinb=23  thì giá trị cos(a + b) cos(a − b) bằng:

A. 23 .

B. 13 .

C. 23 .

D. 13 .

Lời giải:

Đáp án đúng là: D

Ta có cos(a + b) cos(a − b)  Nếu cosa = 1/3, sinb = -2/3  thì giá trị cos(a + b) cos(a − b) bằng

=12cos2a+cos2b

 Nếu cosa = 1/3, sinb = -2/3  thì giá trị cos(a + b) cos(a − b) bằng

Bài 23 trang 15 SBT Toán 11 Tập 1Giá trị của biểu thức P=sinπ9+sin5π9cosπ9+cos5π9  bằng:

A. 13 .

B. 13 .

C. 3 .

D. 3 .                                                                     

Lời giải:

Đáp án đúng là: C

Ta có P=sinπ9+sin5π9cosπ9+cos5π9=2sinπ9+5π92cosπ95π922cosπ9+5π92cosπ95π92

=sinπ3cos2π9cosπ3cos2π9=sinπ3cosπ3=3212=3.

Bài 24 trang 15 SBT Toán 11 Tập 1Rút gọn biểu thức A=sinx+sin2x+sin3xcosx+cos2x+cos3x  ta được kết quả là:

A. tan x. 

B. tan 3x.

C. tan 2x.

D. tan x + tan 2x + tan 3x.

Lời giải:

Đáp án đúng là: C

Ta có A=sinx+sin2x+sin3xcosx+cos2x+cos3x =sinx+sin3x+sin2xcosx+cos3x+cos2x

=2sinx+3x2cosx3x2+sin2x2cosx+3x2cosx3x2+cos2x =2sin2xcosx+sin2x2cos2xcosx+cos2x

=sin2x2cosx+1cos2x2cosx+1=sin2xcos2x=tan2x.

Bài 25 trang 15 SBT Toán 11 Tập 1Cho sina=23  với π2<a<π . Tính:

a) cos a, tan a;

b) sina+π4,cosa5π6,tana+2π3 ;

c) sin 2a, cos 2a.

Lời giải:

a) Vì π2<a<π  nên cos a < 0, do đó từ sin2 a + cos2 a = 1, suy ra

cosa=1sin2a=1232=53.

Ta có tana=sinacosa=2353=255.

b) sina+π4=sinacosπ4+cosasinπ4=23.22+53.22=22106 .

cosa5π6=cosacos5π6+sinasin5π6=53.32+23.12=15+26.

tana+2π3=tana+tan2π31tanatan2π3=255+31255.3=85+937.

c) sin2a=2sinacosa=2.23.53=459 .

cos2a=2cos2a1=2.5321=19.

Bài 26 trang 15 SBT Toán 11 Tập 1Cho cos a = 0,2 với π < a < 2π. Tính sina2 , cosa2 , tana2 .

Lời giải:

Do π < a < 2π nên π2<a2<π . Suy ra sina2>0,  cosa2<0 .

Ta có: sin2a2=1cosa2=10,22=0,4 , suy ra sina2=105 .

Do đó, cosa2=1sin2a2=11052=155 .

tana2=sina2cosa2=105155=63.

Đánh giá

0

0 đánh giá