Giải SBT Toán 11 trang 132 Tập 1 Chân trời sáng tạo

223

Với lời giải SBT Toán 11 trang 132 Tập 1 chi tiết trong Bài tập cuối chương 4 trang 132 sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài tập cuối chương 4 trang 132

Câu 1 trang 132 SBT Toán 11 Tập 1: Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?

A. Ba điểm.

B. Một điểm và một đường thẳng.

C. Hai đường thẳng cắt nhau.

D. Bốn điểm.

Lời giải:

Đáp án đúng là: C

Yếu tố xác định một mặt phẳng duy nhất là hai đường thẳng cắt nhau.

Xét phương án A: Trường hợp ba điểm thẳng hàng không xác định được một mặt phẳng.

Xét phương án B: Trường hợp điểm nằm trên đường thẳng không xác định được một mặt phẳng.

Xét phương án D: Trường hợp bốn điểm không đồng phẳng không xác định được một mặt phẳng.

Câu 2 trang 132 SBT Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AB và E là trung điểm của đoạn thẳng AB. Hình vẽ nào sau đây là hình biểu diễn của hình chóp S.ABCD ?

Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AB và E là trung điểm

Lời giải:

Đáp án đúng là: A

Đáp án A là đáp án đúng vì chứa hình biểu diễn của hình chóp S.ABCD thỏa mãn đề bài.

3 đáp án B, C, D sai:

· Đáp án B sai vì cạnh AB bị che khuất mà AB lại vẽ bằng nét liền.

· Đáp án C sai vì E là trung điểm của AB mà E không được vẽ đúng tỉ lệ trung điểm.

· Đáp án D sai vì AB // CD mà AB và CD trong hình vẽ không thể hiện song song; không có cạnh bên SD.

Câu 3 trang 132 SBT Toán 11 Tập 1: Cho hình chóp S.ABCD có AC cắt BD tại M, AB cắt CD tại N. Trong các đường thẳng sau đây, đường thẳng nào là giao tuyến của (SAC) và (SBD) ?

A. SM.

B. SN.

C. SB.

D. SC.

Lời giải:

Đáp án đúng là: A

Cho hình chóp S.ABCD có AC cắt BD tại M, AB cắt CD tại N. Trong các đường thẳng

M ∈ AC mà AC ⊂ (SAC) nên M ∈ (SAC);

M ∈ BD mà BD ⊂ (SBD) nên M ∈ (SBD).

Do đó M ∈ (SAC) ∩ (SBD).

Lại có S ∈ (SAC) ∩ (SBD) nên (SAC) ∩ (SBD) = SM.

Câu 4 trang 132 SBT Toán 11 Tập 1: Cho hình chóp S.ABCD, đáy là hình bình hành có O là giao điểm của AC và BD. Gọi M, N lần lượt là các điểm nằm trên cạnh SC và SD. Đường thẳng SO cắt đường thẳng AM và BN lần lượt tại P và Q. Giao điểm của đường thẳng AM với mặt phẳng (SBD) là điểm nào sau đây?

A. Điểm P.

B. Điểm Q.

C. Điểm O.

D. Điểm M.

Lời giải:

Đáp án đúng là: A

Cho hình chóp S.ABCD, đáy là hình bình hành có O là giao điểm của AC và BD

Ta có AM ∩ SO = P, mà SO ⊂ (SBD) nên AM ∩ (SBD) = P.

Câu 5 trang 132 SBT Toán 11 Tập 1: Trong không gian, hai đường thẳng không có điểm chung thì

A. cắt nhau.

B. chéo nhau hoặc song song.

C. chéo nhau.

D. song song.

Lời giải:

Đáp án đúng là: B

Trong không gian, hai đường thẳng không có điểm chung và

⦁ cùng nằm trong một mặt phẳng thì chúng song song với nhau;

⦁ không cùng nằm trong một mặt phẳng thì chúng chéo nhau.

Vậy trong không gian, hai đường thẳng không có điểm chung thì chéo nhau hoặc song song.

Câu 6 trang 132 SBT Toán 11 Tập 1: Cho hai đường thẳng song song a, b và mặt phẳng (P). Mệnh đề nào dưới đây đúng?

A. Nếu a // (P) thì b // (P).

B. Nếu a cắt (P) thì b cắt (P).

C. Nếu a nằm trên (P) thì b // (P).

D. Nếu a nằm trên (P) thì b nằm trên (P).

Lời giải:

Đáp án đúng là: B

⦁ a // b, a // (P) thì b // (P) hoặc b ⊂ (P);

⦁ a // b, a cắt (P) thì b cắt (P);

⦁ a // b, a ⊂ (P) thì b // (P) hoặc b ⊂ (P).

Vậy ta chọn phương án B.

Câu 7 trang 132 SBT Toán 11 Tập 1: Cho tứ diện ABCD có P, Q lần lượt là trọng tâm của tam giác ABC và BCD. Giao tuyến của mặt phẳng (ABQ) và mặt phẳng (DCP) là đường thẳng d. Khẳng định nào dưới đây đúng?

A. d đi qua trung điểm hai cạnh AB và CD.

B. d đi qua trung điểm hai cạnh AB và AD.

C. d là đường thẳng PQ.

D. d là đường thẳng QA.

Lời giải:

Đáp án đúng là: A

Cho tứ diện ABCD có P, Q lần lượt là trọng tâm của tam giác ABC và BCD

Gọi M, N lần lượt là trung điểm của AB, CD.

Ta có M ∈ AB mà AB ⊂ (ABQ), nên M ∈ (ABQ) (1)

Khi đó đường trung tuyến CM đi qua trọng tâm P của của ∆ABC.

Do đó mặt phẳng (DCP) chính là mặt phẳng (DCM), nên M ∈ (DCP) (2)

Từ (1) và (2) suy ra M ∈ (ABQ) ∩ (DCP).

Tương tự ta cũng có N ∈ (ABQ) ∩ (DCP).

Suy ra (ABQ) ∩ (DCP) = MN.

Đánh giá

0

0 đánh giá