Một tam giác có chiều cao bằng 1/4 độ dài cạnh đáy tương ứng. Nếu tăng chiều cao đó thêm 2 m

672

Với giải Bài 18 trang 48 SBT Toán lớp 8 Cánh diều chi tiết trong Bài 2: Ứng dụng của phương trình bậc nhất một ẩn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải SBT Toán 8 Bài 2: Ứng dụng của phương trình bậc nhất một ẩn

Bài 18 trang 48 SBT Toán 8 Tập 2: Một tam giác có chiều cao bằng 14 độ dài cạnh đáy tương ứng. Nếu tăng chiều cao đó thêm 2 m và giảm độ dài cạnh đáy tương ứng 2 m thì diện tích tam giác tăng thêm 2,5 m2. Tính chiều cao và độ dài cạnh đáy tương ứng của tam giác ban đầu.

Lời giải:

Gọi x (m) là chiều cao của tam giác ban đầu (x > 0).

Khi đó, độ dài cạnh đáy tương ứng là 4x (m) và diện tích tam giác ban đầu là: x4x2=2x2 (m2).

Khi tăng chiều cao đó thêm 2 m và giảm độ đài cạnh đáy tương ứng 2 m thì chiều cao mới là x + 2 (m), độ dài cạnh đáy tương ứng là 4x ‒ 2 (m) và diện tích tam giác lúc đó là: x+24x22 = (x + 2)(2x - 1) = 2x2 + 3x - 2 (m2).

Vì diện tích tam giác tăng thêm 2,5 m2, nên ta có phương trình:

(2x2 + 3x ‒ 2) ‒ 2x2 = 2,5.

Giải phương trình:

(2x2 + 3x ‒ 2) ‒ 2x2 = 2,5

2x2 + 3x ‒ 2 ‒ 2x2 = 2,5

3x = 2,5 + 2

3x = 4,5

x = 1,5 (thoả mãn điều kiện).

Vậy tam giác ban đầu có chiều cao là 1,5 m và độ cạnh đáy tương ứng là 4 . 1,5 = 6 m.

Đánh giá

0

0 đánh giá