Với lời giải Toán 8 trang 51 Tập 2 chi tiết Bài tập cuối chương 7 sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:
Giải Toán 8 Bài tập cuối chương 7
Thời thơ ấu của Diofantos chiếm cuộc đời
cuộc đời tiếp theo là thời thanh niên sôi nổi
Thêm cuộc đời nữa ông sống độc thân
Sau khi lập gia đình được 5 năm thì sinh một con trai
Nhưng số mệnh chỉ cho con sống bằng nửa đời cha
Ông đã từ trần 4 năm sau khi con mất
Diofantos sống bao nhiêu tuổi, hãy tính cho ra?
Lời giải:
Gọi x là số tuổi của ông Diofantos (x > 0, x ∈ ℕ*).
Thời thơ ấu của ông chiếm (tuổi).
Thời thanh niên của ông chiếm (tuổi).
Thời gian ông sống độc thân chiếm (tuổi).
Thời gian ông lập gia đình đến khi con ông mất chiếm (tuổi).
Theo giả thiết, ta có phương trình:
Giải phương trình:
84x – 14x – 7x – 12x – 42x = 9.84
9x = 756
x = 84 (thỏa mãn điều kiện)
Vậy nhà toán học Diofantos sống 84 tuổi.
Lời giải:
Gọi số tiền ban đầu của ông Ba là x (triệu đồng), điều kiện x > 0.
Số tiền ông Ba đầu tư vào công ty trồng rau sạch là (triệu đồng).
Số tiền lãi từ công ty trồng rau sạch là (triệu đồng).
Số tiền ông Ba đầu tư vào nhà hàng là (triệu đồng).
Số tiền lãi từ nhà hàng là (triệu đồng).
Theo giả thiết, ta có phương trình:
Giải phương trình:
5x + 3x = 6400
8x = 6400
x = 800 (thỏa mãn điều kiện).
Vậy ban đầu ông Ba có 800 triệu đồng.
Lời giải:
Gọi số sản phẩm mỗi ngày dây chuyền phải sản xuất theo kế hoạch là: x (sản phẩm) (x∈ ℕ*).
Số sản phẩm dây chuyền sản xuất theo kế hoạch trong 18 ngày là: 18x (sản phẩm).
Thực tế mỗi ngày dây chuyền sản xuất được là: x+10(sản phẩm).
Thực tế số sản phẩm sản xuất được trong 16 ngày là: 16(x+10) (sản phẩm).
Vì thực tế làm thêm được nhiều hơn 20 sản phẩm so với kế hoạch nên ta có phương trình: 16(x+10)=18x+20.
Giải phương trình:
16(x+10)=18x+20
16x+160=18x+20
16x−18x=20−160
−2x=−140
x =70(thỏa mãn điều kiện).
Vậy số sản phẩm thực tế dây chuyền làm được trong mỗi ngày là 70+10=80 (sản phẩm).
Lời giải:
Gọi khối lượng dung dịch acid với nồng độ acid 25%là x (kg) (0<x<5).
Khối lượng dung dịch acid với nồng độ acid 45% là 5−x(kg).
Khối lượng acid trong dung dịch acid với nồng độ acid 25% là 25%x=0,25x(kg).
Khối lượng acid trong dung dịch acid với nồng độ acid 45% là:
45%.(5−x)=0,45.(5 – x) = 2,25−0,45x(kg).
Tổng khối lượng acid trong 2 dung dịch với nồng độ acid lần lượt là 25%và 45% là:
0,25x+2,25−0,45x=2,25−0,2x(kg).
Khối lượng acid trong dung dịch acid với nồng độ acid 33% là 33%.5=1,65(kg).
Theo giả thiết, ta có:
2,25−0,2x=1,65
0,2x=2,25 – 1,65
0,2x = 0,6
x=3 (thỏa mãn điều kiện).
Do đó, khối lượng dung dịch acid với nồng độ acid 45% là 5−3=2(kg).
Vậy khối lượng dung dịch acid với nồng độ acid 25%và 45% cần dùng lần lượt là 3 kg và 2 kg.
− Nhiệt lượng quả cầu nhôm toả ra khi nhiệt độ hạ từ 100°C đến nhiệt độ cân bằng t°C là:
Q1 = 0,15.880.(100 ‒ t) (J).
− Nhiệt lượng nước thu vào khi tăng nhiệt độ từ 20°C đến nhiệt độ cân bằng t°C là:
Q2 = 0,47.4200.(t ‒ 20) (J).
Tìm nhiệt độ cân bằng (làm tròn kết quả đến hàng đơn vị).
Lời giải:
Để đạt được nhiệt độ cân bằng t °C thì Q1 = Q2.
Khi đó, ta có phương trình: 0,15.880.(100 ‒ t) = 0,47.4200.(t ‒ 20).
Giải phương trình:
0,15.880.(100 ‒ t) = 0,47.4200.(t ‒ 20)
132 . (100 – t) = 1 974 . (t – 20)
13 200 – 132t = 1 974t – 39 480
1 974t + 132t = 13 200 + 39 480
2 106t = 52 680
Vậy nhiệt độ cân bằng khoảng 25 °C.
Xem thêm các lời giải bài tập Toán lớp 8 Cánh diều hay, chi tiết khác:
Bài 1 trang 50 Toán 8 Tập 2: Chọn đáp án đúng.....
Bài 2 trang 50 Toán 8 Tập 2: Giải các phương trình:...
Bài 3 trang 50 Toán 8 Tập 2: Giải các phương trình:...
Xem thêm các bài giải SGK Toán lớp 8 Cánh diều hay, chi tiết khác: