Hoạt động 2 trang 39 Toán 11 Tập 2 Cánh diều | Giải bài tập Toán lớp 11

135

Với giải Hoạt động 2 trang 39 Toán 11 Tập 2 Cánh diều chi tiết trong Bài 3: Hàm số mũ. Hàm số lôgarit giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 3: Hàm số mũ. Hàm số lôgarit

Hoạt động 2 trang 39 Toán 11 Tập 2: Cho hàm số mũ y = 2x.

a) Tìm giá trị y tương ứng với giá trị của x trong bảng sau:

x

–1

0

1

2

3

y

?

?

?

?

?

b) Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm trong bảng giá trị ở câu a.

Bằng cách làm tương tự, lấy nhiều điểm (x; 2x) với x ∈ ℝ và nối lại, ta được đồ thị hàm số y = 2x (Hình 1).

Hoạt động 2 trang 39 Toán 11 Tập 2 | Cánh diều Giải Toán 11

c) Cho biết tọa độ giao điểm của đồ thị hàm số y = 2x với trục tung và vị trí của đồ thị hàm số đó so với trục hoành.

d) Quan sát đồ thị hàm số y = 2x, nêu nhận xét về:

limx2x,limx+2x;

• Sự biến thiên của hàm số y = 2x và lập bảng biến thiên của hàm số đó.

Lời giải:

a) Xét hàm số y = 2x.

Thay x = –1 vào hàm số trên ta được y=21=12.

Tương tự, thay lần lượt các giá trị x = 0; x = 1; x = 2; x = 3 vào hàm số ta được bảng sau:

x

–1

0

1

2

3

y

12

1

2

4

8

b) Các điểmA1;12;  B0;1;  C1;2;  D2;4;  E3;8 được biểu diễn trên mặt phẳng tọa độ Oxy như Hình 1.

Bằng cách làm tương tự, lấy nhiều điểm (x; 2x) với x ∈ ℝ và nối lại, ta được đồ thị hàm số y = 2x (Hình 1).

Hoạt động 2 trang 39 Toán 11 Tập 2 | Cánh diều Giải Toán 11

c) Giao điểm của đồ thị hàm số y = 2x với trục tung là B(0; 1) và đồ thị hàm số đó nằm ở phía trên trục hoành, đi lên kể từ trái sang phải.

d) Từ đồ thị hàm số, ta thấy:

limx2x=0,   limx+2x=+.

• Đồ thị hàm số y = 2x đi lên kể từ trái sang phải nên hàm số y = 2x đồng biến trên ℝ.

Bảng biến thiên của hàm số y = 2x:

Hoạt động 2 trang 39 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Đánh giá

0

0 đánh giá