Giải Toán 8 trang 60 Tập 1 Kết nối tri thức

413

Với lời giải Toán 8 trang 60 Tập 1 chi tiết trong Bài 12: Hình bình hành sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải Toán 8 Bài 12: Hình bình hành

Luyện tập 2 trang 60 Toán 8 Tập 1: Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB tại E và tia phân giác của góc B cắt CD tại F (H.3.32).

Luyện tập 2 trang 60 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

a) Chứng minh hai tam giác ADE và CBF là những tam giác cân, bằng nhau.

b) Tứ giác DEBF là hình gì? Tại sao?

Lời giải:

Luyện tập 2 trang 60 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Do AB > BC nên E nằm giữa A và B; F nằm giữa D và C.

a) Vì ABCD là hình bình hành nên AB // CD hay BE // DF.

Vì DE là tia phân giác của ADC^ nên D^1=D^2 .

 D^1=E^1 (BE // DF, hai góc so le trong) nên D^2=E^1 .

Suy ra tam giác ADE cân tại A.

Tương tự ta cũng chứng minh được: tam giác BCF cân tại C.

Vì ABCD là hình bình hành nên AD = BC; A^=C^;ADC^=ABC^ .

Vì AE là tia phân giác ADC^ ; BF là tia phân giác ABC^ nên

B^1=B^2=12ABC^;D^1=D^2=12ADC^  ADC^=ABC^ .

Do đó B^1=B^2=D^1=D^2 .

Xét ∆ADE và ∆CBF có:

A^=C^ (chứng minh trên);

AD = BC (chứng minh trên);

D^2=B^2 (chứng minh trên).

Do đó ∆ADE = ∆CBF (g.c.g).

b) Vì B^1=B^2=D^1=D^2  B^2=F^1 (vì tam giác BCF cân tại C)

Suy ra D^1=F^1 (hai góc đồng vị).

Do đó DE // BF.

Tứ giác BEDF có:

BE // DF (chứng minh trên);

DE // BF (chứng minh trên).

Do đó, tứ giác BEDF là hình bình hành.

Thực hành 2 trang 60 Toán 8 Tập 1: Chia một sợi dây xích thành bốn đoạn: hai đoạn dài bằng nhau, hai đoạn ngắn bằng nhau và đoạn dài, đoạn ngắn xen kẽ nhau. Hỏi khi móc hai đầu mút của sợi dây xích đó lại để được một tứ giác ABCD (có các đỉnh tại các điểm chia) như Hình 3.33 thì tứ giác ABCD là hình gì? Tại sao?

Thực hành 2 trang 60 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Lời giải:

Đoạn dây xích được chia thành:

• Hai đoạn dài có độ dài bằng nhau, tức là AB = CD;

• Hai đoạn ngắn có độ dài bằng nhau, tức là AD = BC.

Tứ giác ABCD có AB = CD; AD = BC nên tứ giác ABCD là hình bình hành.

Câu hỏi trang 60 Toán 8 Tập 1: Hãy biết giả thiết, kết luận của Định lí 3.

Lời giải:

Câu hỏi trang 60 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Giả thiết, kết luận của Định lí 3:

Câu hỏi trang 60 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Đánh giá

0

0 đánh giá