Bài 3.18 trang 61 Toán 8 Tập 1 Kết nối tri thức | Giải bài tập Toán lớp 8

1.4 K

Với giải Bài 3.18 trang 61 Toán 8 Tập 1 Kết nối tri thức chi tiết trong Bài 12: Hình bình hành giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải bài tập Toán lớp 8 Bài 12: Hình bình hành

Bài 3.18 trang 61 Toán 8 Tập 1: Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD. Một đường thẳng đi qua O lần lượt cắt các cạnh AB, CD của hình bình hành tại hai điểm M, N. Chứng minh ∆OAM = ∆OCN. Từ đó suy ra tứ giác MBND là hình bình hành.

Lời giải:

Bài 3.18 trang 61 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Vì ABCD là hình bình hành nên ta có:

• Hai đường chéo AC và BD cắt nhau tại O nên OA = OC, OB = OD.

• AB // CD nên AM // CN suy ra OAM^=OCN^ (hai góc so le trong).

Xét ∆OAM và ∆OCN có:

OAM^=OCN^ (chứng minh trên)

OA = OC (chứng minh trên)

AOM^=CON^ (hai góc đối đỉnh)

Do đó ∆OAM = ∆OCN (g.c.g).

Suy ra AM = CN (hai cạnh tương ứng)

Mặt khác, AB = CD (chứng minh trên); AB = AM + BM; CD = CN + DN.

Suy ra BM = DN.

Xét tứ giác MBND có:

• BM // DN (vì AB // CD)

• BM = DN (chứng minh trên)

Do đó, tứ giác MBND là hình bình hành.

Sơ đồ tư duy Hình bình hành.

 

Từ khóa :
toán 8
Đánh giá

0

0 đánh giá