Giải Toán 8 trang 54 Tập 1 Kết nối tri thức

273

Với lời giải Toán 8 trang 54 Tập 1 chi tiết trong Bài 11: Hình thang cân sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải Toán 8 Bài 11: Hình thang cân

HĐ2 trang 54 Toán 8 Tập 1: Cho hình thang cân ABCD, kẻ hai đường chéo AC, BD (H.3.19). Hãy chứng minh ∆ACD = ∆BDC. Từ đó suy ra AC = BD.

HĐ2 trang 54 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Lời giải:

Vì ABCD là hình thang cân (AB // CD) nên AD = BC; ADC^=BCD^ .

Xét ∆ACD và ∆BDC có

AD = BC (chứng minh trên);

ADC^=BCD^ (chứng minh trên);

Cạnh CD chung.

Do đó ∆ACD = ∆BDC (c.g.c).

Suy ra AC = BD (hai góc tương ứng).

Luyện tập 3 trang 54 Toán 8 Tập 1: Cho tam giác ABC cân tại A. Kẻ một đường thẳng d song song với BC, d cắt cạnh AB tại D và cắt cạnh AC tại E (H.3.20).

Luyện tập 3 trang 54 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

a) Tứ giác DECB là hình gì?

b) Chứng minh BE = CD.

Lời giải:

a) Theo đề bài: d // BC nên DE // BC

Suy ra DECB là hình thang.

Vì tam giác ABC cân tại A nên B^=C^ .

Hình thang DECB có B^=C^ nên là hình thang cân.

b) Hình thang cân DECB có BE và CD là hai đường chéo.

Do đó BE = CD (đpcm).

Đánh giá

0

0 đánh giá