Giải Toán 8 trang 21 Tập 1 Kết nối tri thức

262

Với lời giải Toán 8 trang 21 Tập 1 chi tiết trong Bài 4: Phép nhân đa thức sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải Toán 8 Bài 4: Phép nhân đa thức

HĐ3 trang 21 Toán 8 Tập 1: Hãy nhớ lại quy tắc nhân hai đa thức một biến bằng cách thực hiện phép nhân:

(2x + 3) . (x2 – 5x + 4).

Lời giải:

Ta có (2x + 3) . (x2 – 5x + 4)

= 2x . x2 – 2x . 5x + 2x . 4 + 3 . x2 – 3 . 5x + 3 . 4

= 2x3 – 10x2 + 8x + 3x2 – 15x + 12

= 2x3 + (3x2 – 10x2) + (8x – 15x) + 12

= 2x3 – 7x2 – 7x + 12.

HĐ4 trang 21 Toán 8 Tập 1: Bằng cách tương tự, hãy thử làm phép nhân (2x + 3y) . (x2 – 5xy + 4y2).

Lời giải:

Ta có (2x + 3y) . (x2 – 5xy + 4y2)

= 2x . x2 – 2x . 5xy + 2x . 4y+ 3y . x2 – 3y . 5xy + 3y . 4y2

= 2x3 – 10x2y + 8xy+ 3x2y – 15xy2 + 12y3

= (2x3 + 12y3) + (3x2y – 10x2y) + (8xy– 15xy2)

= 14y3 – 7x2y – 7xy2.

HĐ5 trang 21 Toán 8 Tập 1: Thực hiện phép nhân:

a) (2x + y)(4x2 – 2xy + y2);

b) (x2y2 – 3)(3 + x2y2).

Lời giải:

a) (2x + y)(4x2 – 2xy + y2)

= 2x . 4x2 – 2x . 2xy + 2x . y+ y . 4x2 – y . 2xy + y . y2

= 8x3 – 4x2y + 2xy+ 4x2y – 2xy2 + y3

= 8x3 + (4x2y – 4x2y) + (2xy– 2xy2) + y3

= 8x3 + y3.

b) (x2y2 – 3)(3 + x2y2) = x2y. 3 + x2y. x2y– 3 . 3 – 3 . x2y2

= 3x2y2 + x4y– 9 – 3x2y= x4y– 9.

Thử thách nhỏ trang 21 Toán 8 Tập 1: Xét biểu thức đại số với hai biến k và m sau:

P = (2k – 3)(3m – 2) – (3k – 2)(2m – 3).

a) Rút gọn biểu thức P.

b) Chứng minh rằng tại mọi giá trị nguyên của k và m, giá trị của biểu thức P luôn là một số nguyên chia hết cho 5.

Lời giải:

a) P = (2k – 3)(3m – 2) – (3k – 2)(2m – 3)

= (6km – 9m – 4k + 6) – (6km – 4m – 9k + 6)

= 6km – 9m – 4k + 6 – 6km + 4m + 9k – 6

= (6km – 6km) + (4m – 9m) + (9k – 4k) + (6 – 6) = 5k – 5m.

b) Ta thấy P = 5k – 5m = 5(k – m)

Vì 5 ⋮ 5 nên 5(k – m) ⋮ 5

Do đó, tại mọi giá trị nguyên của k và m, giá trị của biểu thức P luôn là một số nguyên chia hết cho 5.

Bài 1.24 trang 21 Toán 8 Tập 1: Nhân hai đơn thức:

a) 5x2y và 2xy2;

b) 34xy và 8x3y3;

c) 1,5xy2z3 và 2x3y2z.

Lời giải:

a) 5x2y . 2xy2 = (5. 2)(x2 . x)(y . y2);

b) 34xy.8x3y3=34.8x.x3y.y3=6x4y4 ;

c) 1,5xy2z3 . 2x3y2z = (1,5 . 2)(x . x3)(y2 . y2)(z . z3) = 3x4y4z4.

Bài 1.25 trang 21 Toán 8 Tập 1: Tìm tích của đơn thức với đa thức:

a) (−0,5)xy(2xy – x2 + 4y);

b) x3y12x2+13xy6xy3

Lời giải:

a) (−0,5)xy(2xy – x2 + 4y) = (−0,5)xy. 2xy + 0,5xy. x− 0,5xy. 4y

= −x2y3 + 0,5x3y− 2xy3;

b) x3y12x2+13xy6xy3

=x3y.6xy312x2.6xy3+13xy.6xy3

=6x4y43x3y3+2x2y4

Bài 1.26 trang 21 Toán 8 Tập 1: Rút gọn biểu thức: x(x2 – y) – x2(x + y) + xy(x – 1).

Lời giải:

Ta có x(x2 – y) – x2(x + y) + xy(x – 1)

= x . x2 – x . y – x. x – x. y + xy . x – xy . 1

= x3 – xy – x– x2y + x2y – xy

= (x3 – x3) + (x2y – x2y) – (xy + xy) = –2xy.

Bài 1.27 trang 21 Toán 8 Tập 1: Làm tính nhân:

a) (x2 – xy + 1)(xy + 3);

b) x2y212xy+2x2y

Lời giải:

a) (x2 – xy + 1)(xy + 3)

= x2 . xy – xy . xy + 1 . xy + x2 . 3 – xy . 3 + 1 . 3

= x3y – x2y2 + xy + 3x2 – 3xy + 3

= x3y – x2y2 + (xy – 3xy) + 3x2 + 3

= x3y – x2y2 – 2xy + 3x2 + 3.

b) x2y212xy+2x2y

=x2y2.x12xy.x+2.xx2y2.2y+12xy.2y2.2y

=x3y212x2y+2x2x2y3+xy24y

Bài 1.28 trang 21 Toán 8 Tập 1: Rút gọn biểu thức sau để thấy rằng giá trị của nó không phụ thuộc vào giá trị của biến: (x – 5)(2x + 3) – 2x(x – 3) + x + 7.

Lời giải:

Ta có (x – 5)(2x + 3) – 2x(x – 3) + x + 7

= x . 2x – 5 . 3 – 2x . x + 2x . 3 + x + 7

= 2x2 – 15 – 2x2 + 6x + x + 7

= (2x2 – 2x2) + (6x + x) + (7 – 15) = 7x – 7.

Bài 1.29 trang 21 Toán 8 Tập 1: Chứng minh đẳng thức sau: (2x + y)(2x2 + xy – y2) = (2x – y)(2x2 + 3xy + y2).

Lời giải:

Ta có:

• (2x + y)(2x2 + xy – y2)

= 2x . 2x2 + 2x . xy – 2x . y2 + y . 2x2 + y . xy – y . y2

= 4x3 + 2x2y – 2xy2 + 2x2y + xy2 – y3

= 4x3 + (2x2y + 2x2y) + (xy2 – 2xy2) – y3

= 4x3 + 4x2y – xy2 – y3.

• (2x – y)(2x2 + 3xy + y2)

= 2x . 2x2 + 2x . 3xy + 2x . y– y . 2x2 – y . 3xy – y . y2

= 4x3 + 6x2y + 2xy– 2x2y – 3xy2 – y3

= 4x3 + (6x2y – 2x2y) + (2xy– 3xy2) – y3

= 4x3 + 4x2y – xy2 – y3.

Do đó (2x + y)(2x2 + xy – y2) = (2x – y)(2x2 + 3xy + y2)

= 4x3 + 4x2y – xy2 – y3.

Vậy (2x + y)(2x2 + xy – y2) = (2x – y)(2x2 + 3xy + y2).

Đánh giá

0

0 đánh giá