Phân tích các đa thức sau thành nhân tử: a) 3(a – b) + 2(a – b)2

866

Với giải Bài 14 trang 27 SBT Toán lớp 8 Chân trời sáng tạo chi tiết trong Bài tập cuối chương 1 trang 26 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải SBT Toán 8 Bài tập cuối chương 1 trang 26

Bài 14 trang 27 sách bài tập Toán 8 Tập 1: Phân tích các đa thức sau thành nhân tử:

a) 3(a – b) + 2(a – b)2;

b) (a + 2)2 – (4 – a2);

c) a2 – 2ab – 4a + 8b;

d) 9a2 – 4b2 + 4b – 1;

e) a2b4 – 81a2;

g) a6 – 1.

Lời giải:

a) 3(a – b) + 2(a – b)2

= (a ‒ b)[3 + 2(a ‒ b)]

= (a ‒ b)(3 + 2a ‒ 2b).

b) (a + 2)2 – (4 – a2)

= (a + 2)2‒ (2 ‒ a)(2 + a)

= (a + 2)[(a + 2) ‒ (2 ‒ a)]

= (a + 2)(a + 2 ‒ 2 + a)

= 2a(a + 2).

c) a2 – 2ab – 4a + 8b

= (a2 – 2ab)  (4a  8b)

= a(a ‒ 2b) ‒ 4(a ‒ 2b)

= (a ‒ 2b)(a ‒ 4).

d) 9a2 – 4b2 + 4b – 1

= 9a2 – (4b2 – 4b + 1)

= (3a)2 – (2b – 1)2

= (3a + 2b – 1)(3a – 2b + 1).

e) a2b4 – 81a2

= a2(b4 ‒ 81)

= a2[(b2)2 ‒ 92]

= a2(b2 + 9)(b2 ‒ 9)

= a2(b2 + 9)(b2 ‒32)

= a2(b2 + 9)(b ‒ 3)(b + 3).

g) a6 – 1

= (a3)2 ‒ 12

= (a3 ‒ 1)(a3 + 1)

= (a ‒ 1)(a2 + a + 1)(a + 1)(a2 ‒ a + 1).

Đánh giá

0

0 đánh giá