Cho hình chóp tứ giác S.ABCD có đáy không là hình thang. Gọi O là giao điểm của AC và BD

2.1 K

Với giải Bài 9 trang 95 SBT Toán lớp 11 Cánh diều chi tiết trong Bài 1: Đường thẳng và mặt phằng trong không gian giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 1: Đường thẳng và mặt phằng trong không gian

Bài 9 trang 95 SBT Toán 11: Cho hình chóp tứ giác S.ABCD có đáy không là hình thang. Gọi O là giao điểm của AC và BD. Trên SO lấy điểm I sao cho SI = 2IO.

a) Xác định các giao điểm M, N lần lượt của SA, SD với mặt phẳng (IBC).

b*) Chứng minh rằng các đường thẳng AD, BC và MN đồng quy.

Lời giải:

Sách bài tập Toán 11 Bài 1 (Cánh diều): Đường thẳng và mặt phằng trong không gian (ảnh 1)

a)

Giao điểm M của SA và (IBC):

Ta nhận xét rằng ISO(SAC)CI(SAC).

Trên mặt phẳng (SAC), gọi {M}=CISA.

Do IC(IBC), nên {M}=(IBC)SA.

Vậy M là giao điểm của (IBC) và SA.

Giao điểm N của SD và (IBC):

Ta nhận xét rằng ISO(SBD)BI(SBD).

Trên mặt phẳng (SBD), gọi {N}=BISD.

Do IB(IBC), nên {N}=(IBC)SD.

Vậy N là giao điểm của (IBC) và SD.

b) Trên mặt phẳng (ABCD), gọi K là giao điểm của AD và BC.

Ta có {MSA(SAD)M(IBC)M(SAD)(IBC).

Mặt khác, {NSD(SAD)N(IBC)N(SAD)(IBC).

Vậy giao tuyến của (SAD) và (IBC) là đường thẳng MN.

Do AD(SAD)BC(IBC){K}=ADBC, ta suy ra K nằm trên giao tuyến của (SAD) và (IBC), tức là KMN.

Vậy ba đường thẳng ADBCMN cắt nhau tại K.

Đánh giá

0

0 đánh giá