Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, CD

653

Với giải Bài 4 trang 94 SBT Toán lớp 11 Cánh diều chi tiết trong Bài 1: Đường thẳng và mặt phằng trong không gian giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 1: Đường thẳng và mặt phằng trong không gian

Bài 4 trang 94 SBT Toán 11: Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, CD. Chứng minh rằng bốn điểm M, N, C, D không cùng nằm trong một mặt phẳng.

Lời giải:

Sách bài tập Toán 11 Bài 1 (Cánh diều): Đường thẳng và mặt phằng trong không gian (ảnh 1)

Do N là trung điểm của BC, nên 4 điểm BNCD cùng nằm trong mặt phẳng.

Giả sử 4 điểm MNCD cùng nằm trong một mặt phẳng.

Điều này có nghĩa là M(NCD).

Do bốn điểm BNCD cùng nằm trong mặt phẳng, ta suy ra M(BCD).

Điểm M và điểm B cùng nằm trong mặt phẳng (BCD), nên BM(BCD).

Mặt khác, do M là trung điểm của AB, nên ABM.

Suy ra A(BCD). Điều này là vô lí do ABCD là tứ diện nên bốn điểm ABCD không cùng nằm trong một mặt phẳng.

Đánh giá

0

0 đánh giá