Giải SGK Toán 11 Bài 1 (Cánh diều): Đường thẳng và mặt phẳng trong không gian

4 K

Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 11 Bài 1: Đường thẳng và mặt phẳng trong không gian chi tiết sách Toán 11 Tập 1 Cánh diều giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 1: Đường thẳng và mặt phẳng trong không gian

I. Khái niệm mở đầu

Giải Toán 11 trang 85 Tập 1

Hoạt động 1 trang 85 Toán 11 Tập 1: Sân vận động Old Trafford (Hình 2) ở thành phố Manchester, có biệt danh là “Nhà hát của những giấc mơ”, với sức chứa 75 635 người, là sân vận động lớn thứ hai ở Vương quốc Anh.

 

Hoạt động 1 trang 85 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Quan sát Hình 2 và cho biết mặt sân vận động thường được làm phẳng hay cong.

Giải Toán 11 trang 86 Tập 1

Luyện tập 1 trang 86 Toán 11 Tập 1: Nêu ví dụ trong thực tiễn minh họa hình ảnh của một phần mặt phẳng.

Lời giải:

Các ví dụ trong thực tiễn nói về một phần của mặt phẳng là: Mặt bàn, mặt ghế, nền nhà, ...

Hoạt động 2 trang 86 Toán 11 Tập 1: Quan sát Hình 1, nếu coi mặt sân Napoléon là một phần của mặt phẳng (P) thì đỉnh của kim tự tháp có thuộc mặt phẳng (P) hay không?

Hoạt động 2 trang 86 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Lời giải:

Nếu coi mặt sân Napoléon là một phần của mặt phẳng (P) thì đỉnh của kim tự tháp không thuộc mặt phẳng (P).

Giải Toán 11 trang 87 Tập 1

Luyện tập 2 trang 87 Toán 11 Tập 1: Vẽ hình biểu diễn của mặt phẳng (P) và đường thẳng a xuyên qua nó.

Lời giải:

Luyện tập 2 trang 87 Toán 11 Tập 1 | Cánh diều Giải Toán 11

II. Các tính chất thừa nhận của hình học không gian

Hoạt động 3 trang 87 Toán 11 Tập 1: Hình 9 là hình ảnh xà ngang trong môn Nhảy cao.

Hoạt động 3 trang 87 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Quan sát Hình 9 và cho biết ta cần bao nhiêu điểm đỡ để giữ cố định được xà ngang đó.

Lời giải:

Dựa vào Hình 9, cần có 2 điểm đỡ để giữ cố định được xà ngang.

Hoạt động 4 trang 87 Toán 11 Tập 1: Quan sát Hình 10. Đó là hình ảnh bếp củi với kiềng ba chân. “Kiềng ba chân” là vận dụng bằng sắt, có hình vòng cung được gắn ba chân, dùng để đặt nồi lên khi nấu bếp. Bếp củi và kiềng ba chân là hình ảnh hết sức quen thuộc với gia đình ở Việt Nam. Vì sao kiềng ba chân khi đặt trên mặt đất không bị cập kênh?

Hoạt động 4 trang 87 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Lời giải:

Vì ba điểm chân kiềng sẽ luôn luôn nằm trên một mặt phẳng.

Giải Toán 11 trang 89 Tập 1

Hoạt động 5 trang 89 Toán 11 Tập 1: Hình 15 mô tả một phần của phòng học. Nếu coi bức tường chứa bảng và sàn nhà là hình ảnh của hai mặt phẳng thì giao hai mặt phẳng đó là gì?

Hoạt động 5 trang 89 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Lời giải:

Giao giữa bức tường chứa bảng với nền nhà là một đường thẳng.

Luyện tập 3 trang 89 Toán 11 Tập 1: Trong Ví dụ 4 xác định giao tuyến của hai mặt phẳng (SAC) và (SBD).

Luyện tập 3 trang 89 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Lời giải:

Ta có: S ∈ (SAC) và S ∈ (SBD)

Do đó giao tuyến của hai mặt phẳng (SAC) và (SBD) đi qua điểm S.

Ta lại có: O ∈ AC mà AC ⊂ (SAC) nên O ∈ (SAC);

                O ∈ BD mà BD ⊂ (SBD) nên O ∈ (SBD).

Do đó giao tuyến của hai mặt phẳng (SAC) và (SBD) đi qua điểm O.

Khi đó giao tuyến của hai mặt phẳng (SAC) và (SBD) chính là đường thẳng SO.

Vậy (SAC) ∩ (SBD) = SO.

III. Một số cách xác định mặt phẳng

Giải Toán 11 trang 90 Tập 1

Hoạt động 6 trang 90 Toán 11 Tập 1: Cho điểm A không thuộc đường thẳng d. Lấy hai điểm B và C thuộc đường thẳng d (Hình 18).

a) Mặt phẳng đi qua ba điểm A, B, C có đi qua đường thẳng d hay không?

b) Có bao nhiêu mặt phẳng đi qua điểm A và đường thẳng d?

Hoạt động 6 trang 90 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Lời giải:

a) Dựa vào hình vẽ ta thấy mặt phẳng đi qua ba điểm A, B, C đi qua đường thẳng d.

b) Có duy nhất một mặt phẳng đi qua điểm A và đường thẳng d.

Hoạt động 7 trang 90 Toán 11 Tập 1: Cho hai đường thẳng a và b cắt nhau tại O. Lấy điểm A trên đường thẳng a (A khác O), lấy điểm B trên đường thẳng b (B khác O) (Hình 19).

a) Mặt phẳng đi qua ba điểm A, B, O có đi qua hai đường thẳng a và b hay không?

b) Có bao nhiêu mặt phẳng đi qua hai đường thẳng a và b?

Hoạt động 7 trang 90 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Lời giải:

a) Mặt phẳng đi qua ba điểm A, B, O có đi qua hai đường thẳng a và b.

b) Có một và chỉ một mặt phẳng đi qua hai đường thẳng a và b.

Luyện tập 4 trang 90 Toán 11 Tập 1: Trong mặt phẳng (P) cho tam giác ABC. Điểm D không thuộc mặt phẳng (P). Hỏi qua hai đường thẳng AD và BC có xác định được một mặt phẳng không?

Lời giải:

Luyện tập 4 trang 90 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Do tam giác ABC nằm trên mặt phẳng (P) nên (P) đi qua ba điểm A, B, C.

Mà có một và chỉ một mặt phẳng đi qua ba điểm không thẳng hàng.

Do đó qua ba điểm A, B, C xác định được duy nhất mặt phẳng (P).

Mà điểm D không thuộc mặt phẳng (P) nên bốn điểm A, B, C, D không cùng nằm trên một đường thẳng.

Vậy không xác định được mặt phẳng nào đi qua hai đường thẳng AD và BC .

IV. Hình chóp và hình tứ diện

Giải Toán 11 trang 91 Tập 1

Hoạt động 8 trang 91 Toán 11 Tập 1: Hình 22 là hình ảnh của một hộp quà lưu niệm có dạng hình chóp tứ giác đều S.ABCD. Quan sát Hình 22 và trả lời các câu hỏi

a) Đỉnh S có nằm trong mặt phẳng (ABCD) hay không?

b) Mỗi mặt phẳng của hộp quà lưu niệm có dạng hình gì?

Hoạt động 8 trang 91 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Lời giải:

a) Đỉnh S không nằm trong mặt phẳng (ABCD).

b) Các mặt bên của hộp quà lưu niệm có dạng hình tam giác cân.

Mặt đáy của hộp quà lưu niệm có dạng hình vuông.

Giải Toán 11 trang 92 Tập 1

Luyện tập 5 trang 92 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh SA và AD.

a) Xác định giao điểm của mặt phẳng (CMN) với các đường thẳng AB, SB.

b) Xác định giao tuyến của mặt phẳng (CMN) với mỗi mặt phẳng (SAB) và (SBC).

Lời giải:

a)

Luyện tập 5 trang 92 Toán 11 Tập 1 | Cánh diều Giải Toán 11

+) Trong mặt phẳng (ABCD): Gọi giao điểm của AB với NC là E.

Mà NC ⊂ (CMN)

Suy ra: (CMN) ∩ AB = {E}.

+) Trong mặt phẳng (SAB): Kéo dài EM cắt AB tại F.

Mà EM ⊂ (CMN)

Suy ra (SAB) ∩ EM = {F}.

b)

+) Ta có: M ∈ SA mà SA ⊂ (SAB) nên M ∈ (SAB);

                M ∈ CM mà CM ⊂ (CMN) nên M ∈ (CMN).

Do đó M là giao điểm của hai mặt phẳng (SAB) và (CMN).

Ta lại có: AB ∩ CN = {E};

                AB ⊂ (SAB);

                CN ⊂ (CMN).

Do đó E là giao điểm của hai mặt phẳng (SAB) và (CMN).

Vì vậy (SAB) ∩ (CMN) = EM.

+) Ta có: C ∈ SC mà SC ⊂ (SBC);

               C ∈ CM mà CM ⊂ (CMN).

Do đó C là giao điểm của hai mặt phẳng (SBC) và (CMN).

Ta lại có: SB ∩ EM = {F};

                SB ⊂ (SBC);

                EM ⊂ (CMN).

Do đó F là giao điểm của hai mặt phẳng (SBC) và (CMN).

Vì vậy (SBC) ∩ (CMN) = CF.

Hoạt động 9 trang 92 Toán 11 Tập 1: Hình 25 là hình ảnh của khối rubik tam giác (Pyraminx). Quan sát Hình 25 và trả lời các câu hỏi:

a) Khối rubik tam giác có bao nhiêu đỉnh? Các đỉnh có cùng nằm trong một mặt phẳng không?

b) Khối rubik tam giác có bao nhiêu mặt? Mỗi mặt của khối rubik tam giác là những hình gì?

Hoạt động 9 trang 92 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Lời giải:

a) Khối rubik tam giác có 4 đỉnh. Các đỉnh không cùng nằm trong một mặt phẳng.

b) Khối rubik tam giác có 4 mặt. Mỗi mặt của khối rubik tam giác là hình tam giác.

Giải Toán 11 trang 93 Tập 1

Luyện tập 6 trang 93 Toán 11 Tập 1: Cho tứ diện ABCD. Các điểm M, N, P lần lượt thuộc các cạnh AB, AD, BC sao cho AMAB=13,ANAD=23,BPBC=34

a) Xác định E, F lần lượt là giao điểm của các đường thẳng AC, BD với mặt phẳng (MNP).

b) Chứng minh rằng các đường thẳng NE, PF và CD cùng đi qua một điểm.

Lời giải:

Luyện tập 6 trang 93 Toán 11 Tập 1 | Cánh diều Giải Toán 11

a)

+) Trong mặt phẳng (ABC), gọi giao điểm của MP  với AC là E.

Mà MP ⊂ (MNP) nên (MNP) ∩ AC = {E}.

+) Trong mặt phẳng (ABD), gọi giao điểm của MN với BD là F.

Mà MP ⊂ (MNP) nên (MNP) ∩ BD = {F}.

b) • Ta có: N ∈ AD, mà AD ⊂ (ACD) nên N ∈ (ACD).

Lại có N ∈ (MNP)

Do đó N là giao điểm của (ACD) và (MNP).

Mặt khác: MP ∩ AC = {E};

                 MP ⊂ (MNP);

                 AC ⊂ (ACD).

Do đó E là giao điểm của (ACD) và (MNP).

Suy ra NE = (MNP) ∩ (ACD).

Trong mặt phẳng (ACD), nối NE cắt CD tại I.

Khi đó I ∈ CD và I ∈ NE ⊂ (MNP)

• Ta có: P ∈ BC, mà BC ⊂ (BCD) nên P ⊂ (BCD)

Lại có P ∈ (MNP)

Do đó P là giao điểm của (BCD) và (MNP).

Mặt khác: MN ∩ BD = {F}.

                 MN ⊂ (MNP);

                 BD ⊂ (BCD) .

Do đó F là giao điểm của (BCD) và (MNP).

Suy ra PF = (BCD) ∩ (MNP).

Trong mặt phẳng (BCD), gọi giao điểm của CD với PF là I.

Khi đó I ∈ CD, mà CD ⊂ (ACD)

            I ∈ PF, mà PF ⊂ (MNP)

Suy ra I là giao điểm của hai mặt phẳng (MNP) và (ACD).

Hay I nằm trên giao tuyến NE của (MNP) và (ACD).

Do đó I ∈ NE.

Vậy ba đường thẳng NE, PF, CD cùng đi qua điểm I.

Bài tập

Giải Toán 11 trang 94 Tập 1

Bài 1 trang 94 Toán 11 Tập 1: Khi trát tường, dụng cụ không thể thiếu của người thợ là thước dẹt dài (Hình 28). Công dụng của thước dẹt này là gì? Giải thích.

Bài 1 trang 94 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Lời giải:

Công dụng của thước dẹt: Kiểm tra xem mặt tường đã phẳng chưa.

 Áp thước vào mặt tường, nếu toàn bộ thước áp khít vào mặt tường thì mặt tường đã được trát phẳng, nếu thước không khít vào mặt tường thì cần bổ sung thêm vữa trát vào phần chưa khít đó.  

Bài 2 trang 94 Toán 11 Tập 1: Hình 29 là hình ảnh của chặn giấy gỗ có bốn mặt phân biệt là các tam giác. Vẽ hình biểu diễn của chặn giấy bằng gỗ đó.

Bài 2 trang 94 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Lời giải:

Hình biểu diễn của chặn giấy bằng gỗ là:

Bài 2 trang 94 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Bài 3 trang 94 Toán 11 Tập 1: Cho ba đường thẳng a, b, c không cùng nằm trong một mặt phẳng và đôi một cắt nhau. Chứng minh rằng ba đường thẳng a, b, c cùng đi qua một điểm, hay còn gọi là ba đường thẳng đồng quy.

Lời giải:

Bài 3 trang 94 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Giả sử a ∩ b = {I} và α = mp(a, b);

            a ∩ c = {J} và β = mp(a, c);

            b ∩ c = {K} và γ = mp(b, c) với các điểm I, J, K phân biệt.

Khi đó α ∩ β = a và đường thẳng a chính là đường thẳng IJ.

            α ∩ γ = b và đường thẳng b chính là đường thẳng IK.

            β ∩ γ = c và đường thẳng c chính là đường thẳng JK.

Mà chỉ có một mặt phẳng duy nhất đi qua ba điểm I, J, K, đó là (IJK)

Khi đó a, b, c cùng thuộc mặt phẳng (IJK), điều này trái với giả thiết a, b, c không cùng nằm trong một mặt phẳng.

Vậy I, J, K phải trùng nhau hay a, b, c đồng quy.

Bài 4 trang 94 Toán 11 Tập 1: Cho hình chóp S.ABCD có AC cắt BD tại O và AB cắt CD tại P. Điểm M thuộc cạnh SA (M khác S, M khác A). Gọi N là giao điểm của MP và SB, I là giao điểm của MC và DN. Chứng minh rằng S, O, I thẳng hàng.

Lời giải:

Bài 4 trang 94 Toán 11 Tập 1 | Cánh diều Giải Toán 11

• Ta có: S ∈ (SAC) và S ∈ (SBD)

Do đó S là giao điểm của (SAC) và (SBD).

Mặt khác: AC ∩ BD = {O}.

                 AC ⊂ (SAC);

                 BD ⊂ (SBD).

Do đó O là giao điểm của (SAC) và (SBD).

Suy ra (SAC) ∩ (SBD) = SO.

• Trong mặt phẳng (DMNC) có:

   DN ∩ MC = {I}.

   DN ⊂ (SDB);

   MC ⊂ (SAB).

Do đó I là giao điểm của (SAC) và (SBD).

Suy ra giao tuyến SO của hai mặt phẳng này đi qua điểm I.

Hay I ∈ SO.

Vậy S, I, O thẳng hàng.

Bài 5 trang 94 Toán 11 Tập 1: Cho hình chóp S.ABC. Các điểm M, N lần lượt thuộc các cạnh SA, SC sao cho MA = 2MS, NS = 2NC.

a) Xác định giao điểm của MN với mặt phẳng (ABC).

b) Xác định giao tuyến của mặt phẳng (BMN) với mặt phẳng (ABC).

Lời giải:

Bài 5 trang 94 Toán 11 Tập 1 | Cánh diều Giải Toán 11

a) Trong mặt phẳng (SAC), gọi giao điểm của MN và AC là P.

Mà AC ⊂ (SAC)

Do đó MN ∩ (ABC) = {P}.

b) Ta có MN ∩ (ABC) = {P} nên P ∈ (ABC)

Lại có P ∈ MN mà MN ⊂ (BMN) nên P ∈ (BMN)

Do đó P là giao điểm của (BMN) và (ABC).

Mặt khác: B ∈ (BMN) và B ∈ (ABC).

Do đó B là giao điểm của (BMN) và (ABC).

Vì vậy (BMN) ∩ (ABC) = BP.

Bài 6 trang 94 Toán 11 Tập 1: Cho hình chóp tứ giác S.ABCD có đáy không là hình thang. Gọi M là trung điểm của SA.

a) Xác định giao điểm của CD với mặt phẳng (SAB).

b) Xác định giao tuyến của hai mặt phẳng (SAB) và (SCD).

c) Xác định giao tuyến của hai mặt phẳng (MCD) và (SBC).

Lời giải:

Bài 6 trang 94 Toán 11 Tập 1 | Cánh diều Giải Toán 11

a) Trong mặt phẳng (ABCD) ta có: gọi giao điểm của AB và CD là N.

Mà AB ⊂ (SAB)

Do đó CD ∩ (SAB) = {N}.

b) Ta có: AB ∩ CD = {N};

               AB ⊂ (SAB);

               CD ⊂ (SCD)

Do đó N là giao điểm của (SAB) và (SCD).

Lại có: S ∈ (SAB) và S ∈ (SCD).

Nên S là giao điểm của (SAB) và (SCD).

Vì vậy (SAB) ∩ (SCD) = SN.

c) Ta có: C ∈ (SBC) và C ∈ (MCD).

Do đó C là giao điểm của (SBC) và (MCD).

Trong mặt phẳng (SAB), gọi Q là giao điểm của MN và SB.

Mà MN ⊂ (MCD) và SB ⊂ (SBC)  

Suy ra Q là giao điểm của (SBC) và (MCD).

Vì vậy (SBC) ∩ (MCD) = CQ.

Bài 7 trang 94 Toán 11 Tập 1: Cho hình tứ diện ABCD. Gọi I là trung điểm cạnh CD. Gọi M, N lần lượt là trọng tâm các tam giác BCD, CDA.

a) Chứng minh rằng các điểm M, N thuộc mặt phẳng (ABI).

b) Gọi G là giao điểm của AM và BN. Chứng minh rằng: GMGA=GNGB=13 .

c) Gọi P, Q lần lượt là trọng tâm các tam giác DAB, ABC. Chứng minh rằng các đường thẳng CP, DQ cùng đi qua điểm G và GPGC=GQGD=13 .

Lời giải:

a)

Bài 7 trang 94 Toán 11 Tập 1 | Cánh diều Giải Toán 11

+) Xét tam giác BCD có: I là trung điểm của CD nên BI là đường trung tuyến.

Mà M là trọng tâm tam giác BCD nên BI đi qua M.

Do đó M ∈ BI.

Lại có AI ⊂ (ABI) nên M ∈ (ABI).

+) Xét tam giác ACD có: I là trung điểm của CD nên AI là đường trung tuyến.

Mà N là trọng tâm tam giác ACD nên AI đi qua N.

Do đó N ∈ AI.

Lại có BI ⊂ (ABI) nên N ∈ (ABI).

b) Trong BCD có M là trọng tâm tam giác nên MIBI=13 .

Trong ACD có N là trọng tâm tam giác nên NIAI=13 .

Xét ABI có: NIAI=MIBI=13  nên MN // AB (theo định lí Thalès đảo).

Xét ABI và MN // AB, theo hệ quả định lí Thalès ta có MNAB=NIAI=MIBI=13 .

Xét ABG và MN // AB, theo hệ quả định lí Thalès ta có GMGA=GNGB=MNAB=13 .

c)

Bài 7 trang 94 Toán 11 Tập 1 | Cánh diều Giải Toán 11

• Gọi G’ là giao điểm của AM và CP; G’’ là giao điểm của AM và DQ.

Chứng minh tương tự câu b, ta có: G'MG'A=G'PG'C=PMAC=13  và G''MG''A=G''QG''D=QMAD=13

Do đó GMGA=G'MG'A=G''MG''A=13 .

Mà G, G’, G’’ cùng nằm trên AM nên G ≡ G’ ≡ G’’.

Vậy các đường thẳng CP, DQ cùng đi qua điểm G.

• Xét tam giác ABC, kẻ đường trung tuyến AE (E ∈ BC).

Ta có: Q là trọng tâm DABC nên AQAE=23.

Xét tam giác ABD, kẻ đường trung tuyến AF (F ∈ BD).

Ta có: P là trọng tâm ABD nên APAF=23.

+) Trong mặt phẳng (AEF), có: AQAE=APAF=23 nên PQ // EF (định lí Thalès đảo)

Mà EF // CD (đường trung bình tam giác BCD).

Suy ra PQ // CD

Theo hệ quả định lí Thalès ta có: GPGC=GQGD=QPCD=QP2EF=12.23=13 .+

Xem thêm các bài giải SGK Toán lớp 11 Cánh diều hay, chi tiết khác:

Bài tập cuối chương 3

Bài 1: Đường thẳng và mặt phẳng trong không gian

Bài 2: Hai đường thẳng song song trong không gian

Bài 3: Đường thẳng và mặt phẳng song song

Bài 4: Hai mặt phẳng song song

Lý thuyết Đường thẳng và mặt phẳng trong không gian

I. Khái niệm mở đầu

1. Mặt phẳng

 (ảnh 1)  (ảnh 2)

Hình ảnh mặt phẳng trong thực tiễn

- Biểu diễn một mặt phẳng: Người ta thường biểu diễn mặt phẳng bằng một hình bình hành.

 (ảnh 3) 

- Để kí hiệu mặt phẳng ta dùng chữ cái in hoa đặt trong dấu ngoặc ( ).

2. Điểm thuộc mặt phẳng

 (ảnh 4) 

- Điểm A thuộc mặt phẳng (P), ta kí hiệu A(P)

- Điểm A không thuộc mặt phẳng (P) ta kí hiệu A(P).

3. Hình biểu diễn của một hình trong không gian

a, Khái niệm

Hình được vẽ trong mặt phẳng để giúp ta hình dung được về một hình trong không gian gọi là hình biểu diễn của hình không gian đó.

b, Quy tắc vẽ hình biểu diễn của một hình trong không gian

- Đường thẳng được biểu diễn bởi đường thẳng, đoạn thẳng được biểu diễn bởi đoạn thẳng.

- Hai đường thẳng song song (hoặc cắt nhau) được biểu diễn bởi 2 đường thẳng song song (hoặc cắt nhau).

- Hình biểu diễn giữ nguyên quan hệ liên thuộc giữa điểm và đường thẳng.

- Dùng nét liền để biểu diễn cho đường nhìn thấy và nét đứt đoạn để biểu diễn cho đường bị che khuất.

II. Các tính chất thừa nhận của hình học không gian

- Có một và chỉ một đường thẳng đi qua hai điểm phân biệt cho trước.

- Có một và chỉ một mặt phẳng đi qua 3 điểm không thẳng hàng.

- Nếu một đường thẳng đi qua hai điểm phân biệt của một mặt phẳng thì mọi điểm của đường thẳng đều nằm trong mặt phẳng đó.

- Nếu mọi điểm của đường thẳng d đều thuộc mặt phẳng (P) thì ta nói d nằm trong (P) hoặc (P) chứa d. Kí hiệu d(P) hoặc (P)d.

- Tồn tại 4 điểm không cùng thuộc một mặt phẳng.

- Nếu hai mặt phẳng phân biệt có điểm chung thì các điểm chung của hai mặt phẳng là một đường thẳng đi qua điểm chung đó. Đường thẳng đó được gọi là giao tuyến, kí hiệu d=(P)(Q).

- Trên mỗi mặt phẳng, tất cả các kết quả đã biết trong hình học phẳng đều đúng.

III. Một số cách xác định mặt phẳng

Cho điểm Ad. Khi đó qua điểm A và đường thẳng d có một và chỉ một mặt phẳng. Kí hiệu mp(A,d) hoặc (A,d).

  (ảnh 5)

Cho hai đường thẳng a và b cắt nhau. Khi đó, qua a và b có một và chỉ một mặt phẳng, kí hiệu mp(a,b).

 (ảnh 6) 

IV. Hình chóp và hình tứ diện

1. Hình chóp

- Trong mặt phẳng (P), cho đa giác A1A2...An (n3) . Lấy điểm S nằm ngoài mặt phẳng (P). Nối S với các đỉnh A1,A2,...,Anđể được n tam giác SA1A2,SA2A3,...,SAnA1. Hình gồm đa giác  A1A2...An và n tam giác  SA1A2,SA2A3,...,SAnA1 được gọi là hình chóp và kí hiệu là S.A1A2...An.

- Trong hình chóp S.A1A2...An:

+ Điểm S được gọi là đỉnh.

+ Đa giácA1A2...An được gọi là mặt đáy.

+ Các tam giác SA1A2,SA2A3,...,SAnA1được gọi là các mặt bên

+ Các cạnh SA1,SA2,...,SAnđược gọi là cạnh bên; các cạnhA1A2,A2A3...,AnA1 được gọi là các cạnh đáy.

Nếu đáy của hình chóp là một tam giác, tứ giác, ngũ giác,…thì hình chóp tương ứng gọi là hình chóp tam giác, hình chóp tứ giác, hình chóp ngũ giác,…

2. Hình tứ diện

Cho 4 điểm A, B, C, D không đồng phẳng. Hình gồm 4 tam giác ABC, ABD, ACD và BCD được gọi là hình tứ diện, kí hiệu là ABCD.

 (ảnh 7) 

Trong đó, các điểm A, B, C, D được gọi các đỉnh của tứ diện, các đoạn thẳng AB, BC, CD, DA, BD,AC được gọi là cạnh của tứ diện; các tam giác ABC, ABD, ACD và BCD gọi là mặt của tứ diện.

Hai cạnh không có đỉnh chung được gọi là hai cạnh đối diện, đỉnh không nằm trên một mặt gọi là đỉnh đối diện với mặt đó.

Từ khóa :
Toán 11
Đánh giá

0

0 đánh giá