Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N, P lần lượt là trung điểm của các cạnh SA, BC, CD

0.9 K

Với giải Bài 7 trang 95 SBT Toán lớp 11 Cánh diều chi tiết trong Bài 1: Đường thẳng và mặt phằng trong không gian giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 1: Đường thẳng và mặt phằng trong không gian

Bài 7 trang 95 SBT Toán 11: Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M,N,P lần lượt là trung điểm của các cạnh SA,BC,CD.

a) Xác định giao điểm của đường thẳng NP với mặt phẳng (SAB).

b) Xác định giao tuyến của mặt phẳng (MNP) với các mặt phẳng (SAB),(SAD),(SBC),(SCD).

Lời giải:

Sách bài tập Toán 11 Bài 1 (Cánh diều): Đường thẳng và mặt phằng trong không gian (ảnh 1)

a) Xét mặt phẳng (ABCD), gọi E là giao điểm của AB và NP.

Ta có {E}=ABNP, mà NP(MNP) nên {E}=(SAB)NP.

b)

Giao tuyến của (MNP) và (SAB):

Ta có {MSA(SAB)M(MNP)M(SAB)(MNP).

Mặt khác, theo câu a, ta có {EAB(SAB)ENP(MNP)E(SAB)(MNP).

Từ đó, giao tuyến của hai mặt phẳng (SAB) và (MNP) là đường thẳng ME.

Giao tuyến của (MNP) và (SAD):

Trên mặt phẳng (ABCD), gọi F là giao điểm của AD và NP.

Vì F là giao điểm của AD và NP, ta suy ra {FADFNP.

Do AD(SAD)NP(MNP) nên ta có {F(SAD)F(MNP)F(SAD)(MNP).

Hơn nữa, ta cũng có {MSA(SAD)M(MNP)M(SAD)(MNP).

Vậy giao tuyến của hai mặt phẳng (SAD) và (MNP) là đường thẳng MF.

 

Giao tuyến của (MNP) và (SBC):

Ta có ME là giao tuyến của hai mặt phẳng (SAB) và (MNP)ME(SAB).

Trên mặt phẳng (SAB), gọi {K}=MESB.

Suy ra {KME(MNP)KSB(SBC)K(MNP)(SBC).

Hơn nữa, ta có {N(MNP)NBC(SBC)N(MNP)(SBC).

Vậy giao tuyến của hai mặt phẳng (SBC) và (MNP) là đường thẳng NK.

Giao tuyến của (MNP) và (SCD):

Ta có MF là giao tuyến của hai mặt phẳng (SAD) và (MNP)MF(SAD).

Trên mặt phẳng (SAD), gọi {L}=MFSD.

Suy ra {LMF(MNP)LSD(SCD)L(MNP)(SCD).

Hơn nữa, ta có {P(MNP)PCD(SCD)P(MNP)(SCD).

Vậy giao tuyến của hai mặt phẳng (SCD) và (MNP) là đường thẳng LP.

Đánh giá

0

0 đánh giá