Cho dãy số (un) có tổng n số hạng đầu là Sn= n(-1-5n)/  với n ∈ ℕ*

763

Với giải Bài 55 trang 57 SBT Toán lớp 11 Cánh diều chi tiết trong Bài tập cuối chương 2 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11 . Mời các bạn đón xem:

Giải SBT Toán 11 Bài tập cuối chương 2

Bài 55 trang 57 SBT Toán 11 Tập 1Cho dãy số (un) có tổng n số hạng đầu là Sn=n15n2  với n ∈ ℕ*.

a) Tính u1, u2 và u3.

b) Tìm công thức của số hạng tổng quát u­n.

c) Chứng minh rằng dãy số (un) là một cấp số cộng.

Lời giải:

a) Ta có: u1=S1=1.15.12=3 .

 u1+u2=S2=2.15.22=11  nên u2 = S2 – u1 = – 11 – (– 3) = – 8.

 S2+u3=S3=315.32=24  nên u3 = S3 – S2 = – 24 – (– 11) = – 13.

b) Ta có: un = Sn – Sn – 1 =Cho dãy số (un) có tổng n số hạng đầu là Sn= n(-1 -5n)/2  với n ∈ ℕ*

=n5n2n115n+52=n5n2n5n2+5n+1+5n52

=10n+42=25n.

Vậy un = 2 – 5n.

c) Ta có: Cho dãy số (un) có tổng n số hạng đầu là Sn= n(-1 -5n)/2  với n ∈ ℕ*, với mọi n ≥ 2.

Vậy dãy số (un) là một cấp số cộng.

Đánh giá

0

0 đánh giá