Với lời giải SBT Toán 7 trang 65 Tập 1 chi tiết trong Bài 15: Các trường hợp bằng nhau của tam giác vuông sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:
Giải SBT Toán lớp 7 Bài 15: Các trường hợp bằng nhau của tam giác vuông
Bài 4.33 trang 65 SBT Toán 7 Tập 1: Cho các điểm A, B, C, D, E như Hình 4.35. Biết rằng AC vuông góc với BD, EA = EB và EC = ED.
Chứng minh rằng:
a) ∆AED = ∆BEC.
b) ∆ABC = ∆BAD.
Hướng dẫn giải
a) Xét ∆AED và ∆BEC ta có:
AE = BE (giả thiết)
= = 90° (do AC và DB vuông góc với nhau)
ED = EC (giả thiết)
Do đó, ∆AED = ∆BEC (hai cạnh góc vuông).
b) Ta có: AC = AE + EC; BD = BE + ED. Mà AE = BE; EC = ED nên AC = BD.
Vì ∆AED = ∆BEC nên AD = BC (hai cạnh tương ứng)
Xét ∆ABC và ∆BAD có:
BC = AD (chứng minh trên)
AB chung
AC = BD (chứng minh trên)
Do đó, ∆ABC = ∆BAD (c – c – c).
Bài 4.34 trang 65 SBT Toán 7 Tập 1: Cho hình vuông ABCD. Gọi M và N lần lượt là trung điểm của AB và AD (H.4.36). Chứng minh rằng BN = CM và BN ⊥ CM.
Hướng dẫn giải
Vì ABCD là hình vuông nên AB = BC = CD = DA.
Vì N là trung điểm của AD nên AN = ND = .
Vì M là trung điểm của AB nên AM = MB = .
Mà AB = AD nên AN = BM.
Xét ∆ANB và ∆BMC có:
AN = BM (chứng minh trên)
AB = BC (chứng minh trên)
= = 90° (do ABCD là hình vuông)
Do đó, ∆ANB = ∆BMC (hai cạnh góc vuông)
Suy ra, BN = CM (hai cạnh tương ứng).
Gọi E là giao điểm của BN và CM.
Do ∆ANB = ∆BMC nên .
Từ định lí tổng ba góc trong tam giác BME và tam giác ABN, ta suy ra:
.
Vậy BN vuông góc với CM tại E.
Bài 4.35 trang 65 SBT Toán 7 Tập 1: Cho bốn điểm A, B, C, D như Hình 4.37. Biết rằng , hãy chứng minh CB = DB.
Hướng dẫn giải
Xét ∆ABC và ∆ABD có:
AB chung
= (giả thiết)
= = 90° (giả thiết)
Do đó, ∆ABC = ∆ABD (cạnh huyền – góc nhọn).
Suy ra CB = DB.
Bài 4.36 trang 65 SBT Toán 7 Tập 1: Cho AH và DK lần lượt là hai đường cao của hai tam giác ABC và DEF như Hình 4.38. Biết rằng ∆ABC = ∆DEF, hãy chứng minh AH = DK.
Hướng dẫn giải
Vì ∆ABC = ∆DEF nên
(các góc tương ứng và các cạnh tương ứng bằng nhau).
Vì AH là đường cao của tam giác ABC nên AH vuông góc với BC. Do đó, .
Vì DK là đường cao của tam giác DEF nên DK vuông góc với EF. Do đó, .
Xét ∆ABH và ∆DEK có:
(chứng minh trên)
AB = DE (chứng minh trên)
(chứng minh trên)
Do đó, ∆ABH = ∆DEK (cạnh huyền – góc nhọn).
Suy ra AH = DK.
Xem thêm các bài giải sách bài tập Toán 7 Kết nối tri thức hay, chi tiết khác:
Giải SBT Toán 7 trang 64 Tập 1
Giải SBT Toán 7 trang 66 Tập 1