Giải SBT Toán 7 trang 58 Tập 1 Kết nối tri thức

1.7 K

Với lời giải SBT Toán 7 trang 58 Tập 1 chi tiết trong Bài 13: Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:

Giải SBT Toán lớp 7 Bài 13: Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác

Bài 4.18 trang 58 SBT Toán 7 Tập 1: Cho Hình 4.17, biết rằng AD = BC, AC = BD và ABD^=30°, hãy tính số đo của góc DEC.

Sách bài tập Toán 7 Bài 12: Tổng các góc trong một tam giác - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

Xét ∆ADB và ∆BCA có:

AD = BC (giả thiết)

BD = CA (giả thiết)

AB chung

Do đó, ∆ADB = ∆BCA (c – c – c).

Suy ra, ABD^=BAC^

Mà ABD^ = 30° nên BAC^ = 30° hay BAE^=30°.

Ta có: ABE^=ABD^=30°.

Xét tam giác AEB có:

ABE^ ABE^AEB^ = 180° (định lí tổng ba góc trong tam giác)

30° + 30° + AEB^ = 180°

AEB^ = 180° – 30° – 30°

AEB^ = 120o

Mà AEB^ và DEC^ đối đỉnh nên DEC^ = 120°.

Vậy DEC^ = 120°.

Bài 4.19 trang 58 SBT Toán 7 Tập 1: Cho các điểm A, B, C, D, E như Hình 4.18, biết rằng AB = AC, AD = AE, BD = CE. Chứng minh rằng AEB^=ADC^.

Sách bài tập Toán 7 Bài 12: Tổng các góc trong một tam giác - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

Ta có:

BE = BD + DE

DC = CE + DE

Mà BD = CE nên BE = DC.

Xét hai tam giác ∆ABE và ∆ACD có:

AB = AC (giả thiết)

AE = AD (giả thiết)

BE = DC (chứng minh trên)

Do đó, ∆ABE = ∆ACD (c – c – c)

Suy ra, AEB^=ADC^ (hai góc tương ứng).

Bài 4.20 trang 58 SBT Toán 7 Tập 1: Cho hình bình hành ABCD có hai đường chéo AC và BD bằng nhau (H.4.19).

a) Chứng minh: ∆ABD = ∆DCA; ∆ADC = ∆BCD.

b) Bằng cách tính số đo góc ADC, hãy cho biết ABCD có phải hình chữ nhật không.

Sách bài tập Toán 7 Bài 12: Tổng các góc trong một tam giác - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

a) Xét ∆ABD và ∆DCA có:  

AB = CD (do ABCD là hình bình hành)

AD chung

BD = AC (giả thiết hai đường chéo bằng nhau)

Do đó, ∆ABD = ∆DCA (c – c – c).

Xét ∆ADC và ∆BCD có:  

AD = BC (do ABCD là hình bình hành)

DC chung

AC = BD (giả thiết hai đường chéo bằng nhau)

Do đó, ∆ADC = ∆BCD (c – c – c).

b) Do ∆ABD = ∆DCA nên DAB^=ADC^.

Mặt khác vì ABCD là hình bình hành nên AB // CD, do đó DAB^+ADC^=180° (hai góc trong cùng phía).

Do vậy DAB^=ADC^=180°2=90°.

Hình bình hành ABCD có một góc vuông nên ta suy ra các góc còn lại cũng là góc vuông. Vậy ABCD là hình chữ nhật.

Xem thêm các bài giải sách bài tập Toán 7 Kết nối tri thức hay, chi tiết khác:

Giải SBT Toán 7 trang 56 Tập 1

Giải SBT Toán 7 trang 57 Tập 1

Đánh giá

0

0 đánh giá