Giải SBT Toán 7 trang 57 Tập 1 Kết nối tri thức

2.1 K

Với lời giải SBT Toán 7 trang 57 Tập 1 chi tiết trong Bài 13: Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:

Giải SBT Toán lớp 7 Bài 13: Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác

Bài 4.13 trang 57 SBT Toán 7 Tập 1: Trong mỗi hình vẽ trên lưới ô vuông dưới đây, hãy chỉ ra một cặp hai tam giác bằng nhau.

Sách bài tập Toán 7 Bài 12: Tổng các góc trong một tam giác - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

*) Ở Hình 4.12a) ta thấy: ∆ABC = ∆CDA vì:

AB = DC (đều bằng đường chéo hình chữ nhật được tạo thành từ hai ô vuông nhỏ)

AC: cạnh chung

BC = AD (bằng độ dài 4 ô vuông nhỏ xếp liền nhau)

Do đó, ∆ABC = ∆CDA (c – c – c).

*) Ở Hình 4.12b) ta thấy: ∆MQN = ∆NPM vì:

MQ = NP (đều bằng đường chéo hình chữ nhật được tạo thành từ hai ô vuông nhỏ)

MN: cạnh chung

PM = NQ (đều bằng độ dài đường chéo hình chữ nhật có chiều dài là 4 ô vuông xếp liền nhau và chiều rộng là hai ô vuông xếp liền nhau).

Do đó, ∆MQN = ∆NPM (c – c – c) .

Bài 4.14 trang 57 SBT Toán 7 Tập 1: Cho Hình 4.13, ABCD là hình vuông. E là giao của AC và BD. Hãy chỉ ra các cặp tam giác bằng nhau có chung đỉnh E.

Sách bài tập Toán 7 Bài 12: Tổng các góc trong một tam giác - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

Ta có: AB = BC = CD = DA (đều bằng 3 ô vuông) và EA = EB = EC = ED.

Vậy theo trường hợp bằng nhau cạnh – cạnh – cạnh, ta có các cặp tam giác bằng nhau có chung đỉnh E là:

∆EAD = ∆EDC; ∆EAD = ∆ECB; ∆EAD = ∆EBA;

∆EDC = ∆ECB; ∆EDC = ∆EDA; ∆ECB = ∆EBA;

∆EAD = ∆ECD; ∆EAD = ∆EBC; ∆EAD = ∆EAB;

∆EDC = ∆EBC; ∆EDC = ∆EDA; ∆ECB = ∆EAB.

Bài 4.15 trang 57 SBT Toán 7 Tập 1: Cho Hình 4.14, chứng minh rằng ∆ABC = ∆ADC; ∆MNP = ∆MQP.

Sách bài tập Toán 7 Bài 12: Tổng các góc trong một tam giác - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

a) Xét ∆ABC và ∆ADC có:

AB = AD (giả thiết)

BC = DC (giả thiết)

AC chung

Do đó, ∆ABC = ∆ADC (c – c – c).

b) Xét ∆MNP và ∆MQP có:

MP chung

NP = PQ (giả thiết)

MN = MQ (giả thiết)

Do đó, ∆MNP = ∆MQP (c – c – c).

Bài 4.16 trang 57 SBT Toán 7 Tập 1: Cho Hình 4.15, chứng minh rằng ∆ABC = ∆DCB; ∆ADB = ∆DAC.

Sách bài tập Toán 7 Bài 12: Tổng các góc trong một tam giác - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

Xét ∆ABC và ∆DCB có:

AB = DC (giả thiết)

AC = BD (giải thiết)

BC chung

Do đó, ∆ABC = ∆DCB (c – c – c).

Xét hai tam giác ∆ADB và ∆DAC có:

AB = DC (giả thiết)

BD = AC (giải thiết)

AD chung

Do đó, ∆ADB = ∆DAC (c – c – c).

Bài 4.17 trang 58 SBT Toán 7 Tập 1: Cho Hình 4.16, biết rằng DAC^=40°DCA^=50°, hãy tính số đo các góc của tam giác ABC.

Sách bài tập Toán 7 Bài 12: Tổng các góc trong một tam giác - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

Xét tam giác ADC có:

DAC^+DCA^+D^=180° (định lí tổng ba góc trong tam giác)

40° + 50° + D^ = 180°

D^ = 180° – 40° – 50°

D^ = 90°

Xét ∆ADC và ∆ABC có:

AD = AB (giả thiết)

DC = BC (giả thiết)

AC chung

Do đó, ∆ADC = ∆ABC (c – c – c)

Suy ra, DAC^=BAC^DCA^=BCA^D^=B^ (các góc tương ứng).

Do đó, BAC^=DAC^ = 40°; BCA^=DCA^ = 50°; D^=B^ = 90°.

Vậy tam giác ABC có BAC^= 40°; BCA^= 50°; B^= 90°.

Xem thêm các bài giải sách bài tập Toán 7 Kết nối tri thức hay, chi tiết khác:

Giải SBT Toán 7 trang 56 Tập 1

Giải SBT Toán 7 trang 58 Tập 1

Đánh giá

0

0 đánh giá