50 Bài tập Sự đồng biến nghịch biến của hàm số (có đáp án)- Toán 12

Tải xuống 18 4.7 K 41

Tailieumoi.vn xin giới thiệu Bài tập Toán 12 Chương 1 Bài 1: Sự đồng biến nghịch biến của hàm số. Bài viết gồm 50 bài tập với đầy đủ các mức độ và có hướng dẫn giải chi tiết sẽ giúp học sinh ôn luyện kiến thức và rèn luyện kĩ năng làm bài tập Toán 12. Ngoài ra, bài viết còn có phần tóm tắt nội dung chính lý thuyết Chương 1 Bài 1: Sự đồng biến nghịch biến của hàm số. Mời các bạn đón xem:

Bài tập Toán 9 Chương 1 Bài 1: Sự đồng biến nghịch biến của hàm số

A. Bài tập Sự đồng biến nghịch biến của hàm số

I. Bài tập trắc nghiệm

Bài 1: Cho hàm số y = sin2x - 2x. Hàm số này

A. Luôn đồng biến trên R    

B. Chỉ đồng biến trên khoảng (0; +∞)

C. Chỉ nghịch biến trên (-∞; -1)    

D. Luôn nghịch biến trên R

Lời giải:

Tập xác định D = R

Ta có : y' = 2.cos2x - 2 = 2(cos2x - 1) ≤ 0; ∀ x

(vì -1 ≤ cos2x ≤ 1)

Vậy hàm số luôn nghịch biến trên R

Chọn đáp án D.

Bài 2: Trong các hàm số sau, hàm số nào chỉ đồng biến trên khoảng (-∞; 1) ?

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 3: Tìm m để hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

luôn nghịch biến trên khoảng xác định.

A.-2 < m ≤ 2    

B. m < -2 hoặc m > 2

C. -2 < m < 2    

D. m ≠ ±2

Lời giải:

Tập xác định

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Hàm số nghịch biến trên từng khoảng

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

khi và chỉ khi

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Suy ra m2 - 4 < 0 hay -2 < m < 2. Chọn đáp án C.

Bài 4: Cho hàm số y = -x3 + 3x2 + 3mx - 1, tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (0; +∞)

A. m < 1   

B. m ≥ 1   

C. m ≤ -1   

D. m ≥ -1

Lời giải:

Ta có y' = -3x2 + 6x + 3m. Hàm số nghịch biến trên khoảng (0; +∞) nếu y' ≤ 0 trên khoảng (o; +∞)

Cách 1: Dùng định lí dấu tam thức bậc hai.

Xét phương trình -3x2 + 6x + 3m. Ta có Δ' = 9(1 + m)

TH1: Δ' ≤ 0 => m ≤ -1 khi đó, -3x2 + 6x + 3m < 0 nên hàm số nghịch biến trên R .

TH2: Δ' > 0 => m > -1; y' = 0 có hai nghiệm phân biệt là x = 1 ±1+m .

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Hàm số nghịch biến trên (0; +∞) <=> 1 + 1+m ≤ 0, vô lí.

Từ TH1 và TH2, ta có m ≤ -1

Cách 2: Dùng phương pháp biến thiên hàm số.

Ta có y' = -3x2+ 6x + 3m ≤ 0, ∀x > 0 <=> 3m ≤ 3x2 - 6x, ∀x > 0

Từ đó suy ra 3m ≤ min(3x2 - 6x) với x > 0

Mà 3x2 -6x = 3(x2 -2x + 1) - 3 = 3(x - 1)2 - 3 ≥ -3 ∀ x

Suy ra: min( 3x2 – 6x) = - 3 khi x= 1

Do đó 3m ≤ -3 hay m ≤ -1.

Chọn đáp án C.

Bài 5: Cho đồ thị hàm số với x ∈ [- π2 ; 3π2] như hình vẽ.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Tìm khoảng đồng biến của hàm số y = sinx với x ∈ [- π2; 3π2]

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Trên khoảng (-π2; π2) đồ thị hàm số đi lên từ trái sang phải.

Trên khoảng (π2; 3π2) đồ thị hàm số đi xuống từ trái sang phải.

Do đó hàm số đồng biến trên khoảng (-π2; π2)

Chọn đáp án A.

Bài 6: Cho đồ thị hàm số y = -x3 như hình vẽ. Hàm số y = -x3 nghịch biến trên khoảng:

A. (-1;0)    

B. (-∞;0)

C. (0;+∞)    

D. (-1;1)

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Trên khoảng (0; +∞) đồ thị hàm số đi xuống từ trái sang phải.

Do đó hàm số nghịch biến trên khoảng (0;+∞),

Chọn đáp án C.

Bài 7: Cho đồ thị hàm số y = -2x như hình vẽ. Hàm số y = -2x đồng biến trên

A. (-∞;0)   

B. (-∞;0) ∪ (0;+∞)

C. R    

D. (-∞;0) và (0;+∞)

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Đồ thị hàm số đi lên từ trái sang phải trên hai khoảng (-∞;0) và (0;+∞)

Chọn đáp án D.

Ghi chú. Những sai lầm có thể gặp trong quá trình làm bài:

- Không chú ý tập xác định nên chọn đáp án C.

- Không chú ý định nghĩa của hàm đồng biến nên chọn đáp án B.

Bài 8: Cho hàm số f(x) có đạo hàm f'(x) = x(x-1)(x+2)2

Kết luận nào sau đây là đúng?

A. Hàm số f(x) nghịch biến trên khoảng (-∞;1).

B. Hàm số f(x) đồng biến trên các khoảng (-∞;0) và (1;+∞).

C. Hàm số f(x) đồng biến trên các khoảng và (1;+∞).

D. Hàm số f(x) đồng biến trên các khoảng (1;+∞).

Lời giải:

Điều kiện: x > 0

Bảng xét dấu :

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy f(x) đồng biến trên khoảng (1;+∞) và nghịch biến trên khoảng (0;1).

Chọn đáp án D.

Bài 9: Khoảng nghịch biến của hàm số y = x33 - 2x2 + 3x + 5 là:

A. (1;3)    

B.(-∞; 1) ∪ (3; +∞)   

C. (-∞; 1) và (3; +∞)    

D. (1;+∞)

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bảng xét dấu y’:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy hàm số nghịch biến trên khoảng (1;3).

Chọn đáp án A.

Bài 10: Cho hàm số y = x4 - 2x2 + 3 . Kết luận nào sau đây đúng?

A. Hàm số nghịch biến trên khoảng (-∞; -1) ∩ (0; 1)

B. Hàm số đồng biến trên khoảng (-1; 0) ∪ (1; +∞)

C. Hàm số nghịch biến trên khoảng (-∞; -1) ∪ (0; 1)

D. Hàm số đồng biến trên các khoảng (-1; 0) và (1; +∞)

Lời giải:
Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bảng xét dấu y’:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Từ đó ta có: Hàm số đồng biến trên các khoảng (-1; 0) và (1; +∞) , nghịch biến trên các khoảng (-∞; -1) và (0; 1) .

Chọn đáp án D.

Câu 11: Cho hàm số y=-x3+3x2-3x+2. Khẳng định nào sau đây là khẳng định đúng?

A. Hàm số luôn nghịch biến trên R.

B. Hàm số nghịch biến trên các khoảng ;1 và 1;+

C. Hàm số đồng biến trên khoảng -;1 và nghịch biến trên khoảng 1;+

D. Hàm số luôn đồng biến trên R.

Lời giải:

Chọn đáp án A.

Câu 12:  Hỏi hàm số nào sau đây luôn nghịch biến trên R?

Ah(x)=x4-4x2+4.

Bg(x)=x3+3x2+10x+1.

Cfx=-45x5+43x3-x .

Dk(x)=x3+10xcos2x.

Lời giải:

Chọn đáp án C.

Câu 13: Hỏi hàm số y=x23x+5x+1 nghịch biến trên các khoảng nào ?

A. (;4) và (2;+).

B4;2.

C. (;1) và (-1;+).

D4;1 và 1;2.

Lời giải:

Chọn đáp án D.

II. Bài tập tự luận có lời giải

Bài 1: Cho hàm số y = x3 - x2 + (m-1)x + m. Tìm điều kiện của tham số m để hàm số đồng biến trên R

Lời giải:

y' = x2 - 2x + (m -1).

Hàm số đồng biến trên R ⇔ y' ≥ 0 ∀x ∈ R

⇒ Δ = (-1)2 - (m-1) = -m + 2 ≤ 0 ⇔ m > 2

Bài 2: Cho hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Tìm giá trị lớn nhất của tham số m để hàm số nghịch biến trên khoảng (-∞; -1).

Lời giải:

Ta có y' = -x2 - mx - 2 . Hàm số nghịch biến trên khoảng (-∞; - 1) nếu y' = x2 - mx - 2 ≤ 0 trên khoảng (-∞; -1)

Cách 1. Dùng định lí dấu của tam thức bậc hai. Ta có Δ = m2 - 8

TH1: -22 ≤ m ≤ 22 => Δ ≤ 0.

Lại có, hệ số a = -1 < 0 nên y' ≤ 0 ∀ x

Hàm số nghịch biến trên R

TH2: Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 y' = 0. có hai nghiệm phân biệt là Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Từ TH1 và TH2, ta có m ≤ 22

Cách 2. Dùng phương pháp biến thiên hàm số

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Từ đó suy ra

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Do đó m ≤ 22

Vậy giá trị lớn nhất của tham số m để hàm số nghịch biến trên khoảng (-∞; -1) là m = 22

Bài 3: Tìm tất cả các giá trị của tham số m sao cho hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 4: Cho hàm số y = x3 + 3x2 + mx + 1 - 2m. Tìm các giá trị của m để hàm số đồng biến trên đoạn có độ dài bằng 1.

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

y' = 3x2 + 6x + m. Hàm số đồng biến nếu y' ≥ 0. Ta có Δ' = 9 - 3m

TH1: m ≥ 3 => Δ' ≤ 0 .

Hàm số đồng biến trên R. Do đó m ≥ 3 không thỏa mãn yêu cầu đề bài

TH2: m < 3 => Δ' > 0 .

y’ có hai nghiệm phân biệt là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Từ bảng biến thiên, ta thấy không tồn tại m để hàm số đồng biến trên đoạn có độ dài bằng 1.

Từ TH1 và TH2, không tồn tại m thỏa mãn.

Bài 5: Cho đồ thị hàm số có dạng như hình vẽ.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Hàm số đồng biến trên?

Lời giải:

Trên khoảng (0; 1) đồ thị hàm số đi lên từ trái qua phải

Trên khoảng (1; 3) đồ thị hàm số đi lên từ trái qua phải

Đồ thị hàm số bị gián đoạn tại x = 1. Do đó hàm số đồng biến trên từng khoảng (0; 1) và (1; 3)

Bài 6: Hỏi hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

đồng biến trên các khoảng nào?

Lời giải:

Hàm số xác định ∀x ≠ -5

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

y' xác định ∀x ≠ -5 . Bảng xét dấu y’:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy hàm số đồng biến trên các khoảng (-∞; -5) và (-5; +∞)

Bài 7: Tìm khoảng đồng biến của hàm số y = 2x3 - 9x3 + 12x + 3

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bảng xét dấu đạo hàm:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Hàm số đồng biến trên các khoảng (-∞; 1) và (2; +∞)

Bài 8: Khoảng nghịch biến của hàm số y = x4 - 2x2 - 1 là:

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bảng xét dấu đạo hàm

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Hàm số nghịch biến trên các khoảng (-∞; -1) và (0; 1)

Bài 9: Cho hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Khẳng định nào sau đây là khẳng định đúng?

Lời giải:

Hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

xác định ∀x ≠ 1

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

xác định ∀x ≠ 1

Bảng xét dấu đạo hàm

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Hàm số nghịch biến trên các khoảng (-∞ 1) và (1; +∞)

Bài 10: Tìm khoảng đồng biến của hàm số f(x)= x + cos2x

Lời giải:

f'(x) = 1 - 2sinxcosx = sin2x + cos2x - 2.sinx.cosx = (sinx - cosx)2 ≥ 0 ∀x ∈ R

Hàm số đồng biến trên khoảng (-∞; +∞)

III. Bài tập vận dụng

Lời giải:

Bài 1 Hàm số:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

đồng biến trên khoảng nào?

Lời giải:

Bài 2 Từ đồ thị (H.1, H.2) hãy chỉ ra các khoảng tăng, giảm của hàm số y = cosx trên đoạn [-π23π2] và các hàm số y = |x| trên khoảng (-∞; +∞).

Giải bài tập Toán 12 | Giải Toán lớp 12

Bài 3 Xét các hàm số sau và đồ thị của chúng:

a) y = -x22 (H.4a)       b) y = 1x (H.4b)

Giải bài tập Toán 12 | Giải Toán lớp 12

Xét dấu đạo hàm của mỗi hàm số và điền vào bảng tương ứng.

Bài 4 Khẳng định ngược lại với định lí trên có đúng không ? Nói cách khác, nếu hàm số đồng biến (nghịch biến) trên K thì đạo hàm của nó có nhất thiết phải dương (âm) trên đó hay không ?

Bài 5 Xét sự đồng biến, nghịch biến của hàm số:

a) y = 4 + 3x – x2

b) y = 13.x+ 3x2 - 7x -2

c) y = x4 - 2x2 + 3

d) y = -x3 + x2 – 5

Bài 6 Trong các hàm số sau, hàm số nào chỉ đồng biến trên khoảng (-∞; 1) ?

Bài 7 Cho hàm số y = -x3 + 3x2 + 3mx - 1, tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (0; +∞)

Bài 8 Cho đồ thị hàm số với x ∈ [- π2; 3π2] như hình vẽ.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 9 Tìm khoảng đồng biến của hàm số y = sinx với x ∈ [- π2 ; 3π2]

Bài 10 Chứng minh rằng hàm số  đồng biến trên khoảng (0;1) và nghịch biến trên khoảng (1,2).

B. Lý thuyết Sự đồng biến nghịch biến của hàm số

I. Tính đơn điệu của hàm số

1. Nhắc lại định nghĩa

- Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y = f(x) xác định trên K. Ta nói:

Hàm số y = f(x) đồng biến (tăng) trên K nếu với mọi cặp x1; x2 thuộc K mà x1 nhỏ hơn x2 thì f(x1) nhỏ hơn f(x2), tức là

x1 < x2  f(x1) < f(x2).

Hàm số y = f(x) nghịch biến (giảm) trên K nếu với mọi cặp x1; x2 thuộc K mà x1 nhỏ hơn x2 thì f(x1) lớn hơn f(x2), tức là

x1 < x2 f(x1) > f(x2).

- Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là hàm số đơn điệu trên K.

- Nhận xét: Từ định nghĩa trên ta thấy:

a) f(x) đồng biến trên Kf(x2)f(x1)x2x1  >0  ; x1;x2  K;  (x1x2)

f(x) nghịch biến trên Kf(x2)f(x1)x2x1  < ​0  ;x1;x2  K;  (x1x2)

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải.

Lý thuyết Sự đồng biến, nghịch biến của hàm số chi tiết – Toán lớp 12 (ảnh 1)

Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải.

Lý thuyết Sự đồng biến, nghịch biến của hàm số chi tiết – Toán lớp 12 (ảnh 1)

2. Tính đơn điệu và dấu của đạo hàm

- Định lí:

Cho hàm số y = f(x) có đạo hàm trên K.

a) Nếu f’(x) > 0 với mọi x thuộc K thì hàm số f(x) đồng biến trên K.

b) Nếu f’(x) < 0 với mọi x thuộc K thì hàm số f(x) nghịch biến trên K.

- Chú ý:

Nếu f’(x) = 0 với x   ​K   thì f(x) không đổi trên K.

Ví dụ 1. Tìm các khoảng đơn điệu của hàm số

a) y = x2 + 2x – 10;

b) y=  x+52x3

Lời giải:
a) Hàm số đã cho xác định với mọi x

Ta có  đạo hàm y’ = 2x + 2

Và y’ = 0 khi x = – 1.

Lập bảng biến thiên:

Lý thuyết Sự đồng biến, nghịch biến của hàm số chi tiết – Toán lớp 12 (ảnh 1)

Vậy hàm số đã cho đồng biến trên khoảng 1;  +​  và nghịch biến trên khoảng ;  1.

b) y=  x+52x3

Hàm số đã cho xác định với x32

Ta có: y'=  13(2x3)2  <0  x32

Do đó, hàm số đã cho nghịch biến trên khoảng ;  32 và 32;  +​ 

- Chú ý:

Ta có định lí mở rộng sau đây:

Giả sử hàm số y = f(x) có đạo hàm trên K. Nếu f'(x)  0   f'(x)0  ;  xK

Và f’(x) = 0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (nghịch biến) trên K.

Ví dụ 2.  Tìm các khoảng đơn điệu của hàm số y = x3 – 6x2 + 12x – 10.

Lời giải:

Hàm số đã cho xác định với mọi xR

Ta có: y’ = 3x2 – 12x + 12 = 3(x – 2)2

Do đó; y’ = 0 khi x = 2 và y’ > 0 với x2

Theo định lí mở rộng, hàm số đã cho luôn luôn đồng biến trên R.

II. Quy tắc xét tính đơn điệu của hàm số.

1. Quy tắc

- Bước 1. Tìm tập xác định.

- Bước 2. Tính đạo hàm  f’(x). Tìm các điểm xi  ( i = 1; 2; …; n) mà tại đó đạo hàm bằng 0 hoặc không xác định.

- Bước 3. Sắp xếp các điểm xi theo thứ tự tăng dần và lập bảng biến thiên.

- Bước 4. Nêu kết luận về các khoảng đồng biến, nghịch biến của hàm số.

2. Áp dụng

Ví dụ 3. Xét sự đồng biến, nghịch biến của hàm số y = x4 – 2x2 – 3.

Lời giải:

Hàm số đã cho xác định với mọi x.

Ta có: y’ = 4x3 – 4x

y’ = 0x=0x=  ±1

Bảng biến thiên:

Lý thuyết Sự đồng biến, nghịch biến của hàm số chi tiết – Toán lớp 12 (ảnh 1)

Vậy hàm số đã cho đồng biến trên (– 1; 0) và (1;  +)

Hàm số nghịch biến trên ;  1 và (0; 1).

Ví dụ 4.  Cho hàm số y  =  x3+6x2​  9x  +3. Xét tính đồng biến, nghịch biến của hàm số trên.

Lời giải:

Hàm số đã cho xác định với mọi x.

Ta có: y’ = – 3x2 + 12x – 9

Và y’ = 0x=  1x=3

Bảng biến thiên:

Lý thuyết Sự đồng biến, nghịch biến của hàm số chi tiết – Toán lớp 12 (ảnh 1)

Vậy hàm số đã cho đồng biến trên (1; 3); nghịch biến trên (;  1) và (3;  +).

Tài liệu có 18 trang. Để xem toàn bộ tài liệu, vui lòng tải xuống
Đánh giá

0

0 đánh giá

Tải xuống