Cho đường thẳng d: x + y + 2 = 0, đường tròn (C): x^2 + y^2 – 4x + 8y – 5 = 0

540

Với giải Bài 12 trang 41 Chuyên đề Toán 11 Chân trời sáng tạo chi tiết trong Bài tập cuối chuyên đề 1 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 11. Mời các bạn đón xem:

Giải Chuyên đề Toán 11 Bài tập cuối chuyên đề 1

Bài 12 trang 41 Chuyên đề Toán 11Cho đường thẳng d: x + y + 2 = 0, đường tròn (C): x2 + y2 – 4x + 8y – 5 = 0.

a) Tìm ảnh của d qua phép đối xứng trục Ox.

b) Tìm ảnh của (C) qua phép đối xứng trục Oy.

Lời giải:

a) Chọn điểm M(–1; –1) ∈ d: x + y + 2 = 0.

Ta đặt M’ = ĐOx(M).

Suy ra Ox là đường trung trực của đoạn MM’ hay M, M’ đối xứng nhau qua Ox.

Do đó hai điểm M và M’ có cùng hoành độ và có tung độ đối nhau.

Vì vậy tọa độ M’(–1; 1).

Gọi N là giao điểm của d và Ox, khi đó yN = 0, suy ra xN = –2. Do đó N(–2; 0).

Gọi d’ là ảnh của d qua phép đối xứng trục Ox, khi đó đường thẳng d’ đi qua hai điểm M’(–1; 1) và N(–2; 0).

Ta có: M'N=1;1nd'=1;1.

Đường thẳng d’ đi qua điểm N(–2; 0) và có vectơ pháp tuyến nd'=1;1nên có phương trình là:

1.(x + 2) – 1.(y – 0) = 0 hay x – y + 2 = 0.

b) Đường tròn (C): x2 + y2 – 4x + 8y – 5 = 0 có tâm I(2; –4), bán kính R=22+425=5.

Gọi đường tròn (C’) là ảnh của đường tròn (C) qua ĐOy.

Suy ra (C’) là đường tròn có tâm là ảnh của I qua ĐOy và có bán kính R’ = R = 5.

Ta đặt I’ = ĐOy(I).

Suy ra Oy là đường trung trực của đoạn II’ hay I và I’ đối xứng nhau qua Oy

Do đó hai điểm I và I’ có cùng tung độ và có hoành độ đối nhau.

Vì vậy tọa độ I’(–2; –4).

Vậy phương trình đường tròn (C’) là ảnh của (C) qua ĐOy là: (x + 2)2 + (y + 4)2 = 25.

Từ khóa :
Toán 11
Đánh giá

0

0 đánh giá