Thực hành 4 trang 119 Toán 11 Tập 1 Chân trời sáng tạo | Giải bài tập Toán lớp 11

343

Với giải Thực hành 4 trang 119 Toán 11 Tập 1 Chân trời sáng tạo chi tiết trong Bài 4: Hai mặt phẳng song song giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 4: Hai mặt phẳng song song

Thực hành 4 trang 119 Toán 11 Tập 1: Cho hình hộp ABCD.A’B’C’D’và một mặt phẳng (α) cắt các mặt của hình hộp theo các giao tuyến MN, NP, PQ, QR, RS, SM như Hình 18. Chứng minh các cặp cạnh đối của lục giác MNPQRS song song với nhau.

Thực hành 4 trang 119 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

+) Ta có: (ABCD) // (A’B’C’D’)

(α) ∩ (ABCD) = MN

(α) ∩ (A’B’C’D’) = QR

⇒ MN // QR.

+) Ta có: (AA’D’D) // (BB’C’C)

(α) ∩ (AA’D’D) = MS

(α) ∩ (BB’C’C) = PQ

⇒ MS // PQ.

+) Ta có: (AA’B’B) // (DD’C’C)

(α) ∩ (AA’B’B) = NP

(α) ∩ (DD’C’C) = SR

⇒ NP // SR.

Lý thuyết Hình lăng trụ và hình hộp

- Cho hai mặt phẳng song song (P) và (P). Trên (P) cho đa thức đa giác lồi A1A2...An. Qua các đỉnhA1,A2,...,Anvẽ các đường thẳng đôi một song song và cắt mặt phẳng (P)tại A1,A2,...,An. Hình gồm hai đa giácA1A2...AnA1A2...An và các tứ giác A1A1A2A2,A2A2A3A3,…,AnAnA1A1được gọi là hình lăng trụ và kí hiệu là A1A2...An.A1A2...An.

 

- Các điểm A1,A2,...,An và A1,A2,...,Anđược gọi là các đỉnh, các đoạn thẳng A1A1,A2A2,...,AnAnđược gọi là các cạnh bên, các đoạn thẳng A1A2,A2A3,...,AnA1và A1A2,A2A3,...,AnA1 gọi là cạnh  đáy của hình trụ.

- Hai đa giác A1A2...Anvà A1A2...Anđược gọi là hai mặt đáy của hình lăng trụ.

Các tứ giác A1A1A2A2,A2A2A3A3,…,AnAnA1A1 gọi là các mặt bên của hình trụ.

 (ảnh 8) 

- Hình lăng trụ có đáy là tam giác, tứ giác, ngũ giác,…tương ứng được gọi là hình lăng trụ tam giác, hình lăng trụ tứ giác, hình lăng trụ ngũ giác,…

 (ảnh 9) 

Hình hộp là hình lăng trụ có đáy là hình bình hành.

 (ảnh 10) 

- Trong hình hình hộp có:

+ Sáu mặt là sau hình bình hành. Mỗi mặt đều có một mặt song song với nó gọi là hai mặt đối diện.

+ Hai đỉnh không cùng nằm trưn một mặt gọi là hai đỉnh đối diện.

+ Đoạn thẳng nối 2 đỉnh đối diện gọi là đường chéo.

+ Bốn đường chéo cắt nhau tại trung điểm mỗi đường.

Từ khóa :
Toán 11
Đánh giá

0

0 đánh giá