Hoạt động khám phá 5 trang 116 Toán 11 Tập 1 Chân trời sáng tạo | Giải bài tập Toán lớp 11

400

Với giải Hoạt động khám phá 5 trang 116 Toán 11 Tập 1 Chân trời sáng tạo chi tiết trong Bài 4: Hai mặt phẳng song song giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 4: Hai mặt phẳng song song

Hoạt động khám phá 5 trang 116 Toán 11 Tập 1: Cho ba mặt phẳng song song (P), (Q), (R) lần lượt cắt hai đường thẳng a và a’ tại các điểm A, B, C và A’, B’, C’. Gọi B1 là giao điểm của AC’ với (Q) (Hình 12).

Hoạt động khám phá 5 trang 116 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) Trong tam giác ACC’, có nhận xét gì về mối liên hệ giữa ABBC và AB1B1C'?

b) Trong tam giác AA’C’, có nhận xét gì về mối liên hệ giữa AB1B1C và A'B'B'C'?

c) Từ đó, nêu nhận xét về mối liên hệ giữa các tỉ số ABA'B',BCB'C',ACA'C'.

Lời giải:

a) Mặt phẳng (ACC’) cắt (Q) và (R) lần lượt tại BB1 và CC’nên BB1 // CC’.

Áp dụng định lí Thales trong tam giác ACC’, ta có: ABBC=AB1B1C' (1).

b) Mặt phẳng (AA’C’) cắt (P) và (Q) lần lượt tại AA’ và B’B1 nên B’B1 // AA’.

Áp dụng định lí Thales trong tam giác AA’C’, ta có: AB1B1C=A'B'A'C' (2).

c) Từ (1) và (2), ta có: ABBC=A'B'B'C'ABA'B'=BCB'C'

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

ABA'B'=BCB'C'=AB+BCA'B'+B'C'=ACA'C'

Lý thuyết Định lí Thalès trong không gian

Ba mặt phẳng đôi một song song chắn trên hai cát tuyến phân biệt bất kì những đoạn thẳng tương ứng tỉ lệ.

 (ảnh 7) 

ABAB=BCBC=ACAC

Từ khóa :
Toán 11
Đánh giá

0

0 đánh giá