Lý thuyết Tứ giác (Cánh diều 2024) hay, chi tiết | Lý thuyết Toán lớp 8

3.3 K

Với tóm tắt lý thuyết Toán lớp 8 Bài 2: Tứ giác sách Cánh diều hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán lớp 8.

Lý thuyết Toán lớp 8 Bài 2: Tứ giác

A. Lý thuyết Tứ giác

1. Khái niệm 

Tứ giác ABCD là một hình gồm bốn đoạn thẳng AB, BC, CD và DA, trong đó bất kì hai đoạn thẳng nào cũng không cùng nằm trên một đường thẳng.

Ví dụ:

  (ảnh 1)

Đặc điểm

+ Có 4 đỉnh

+ Có 4 cạnh

Tứ giác lồi là tứ giác luôn nằm về một phía của đường thẳng chứa bất kỳ cạnh nào của tứ giác đó.

Ví dụ: ABCD là tứ giác lồi, EFGH không phải là tứ giác lồi.

2. Tính chất

+ Hai cạnh kề nhau là hai cạnh chung đỉnh.

+ Hai cạnh kề nhau tạo thành góc của tứ giác.

+ Hai cạnh đối nhau không chung đỉnh.

+ Hai đỉnh đối nhau là hai đỉnh không cùng nằm trên một cạnh.

+ Đường chéo là đoạn thẳng nối hai đỉnh đối nhau.

3. Định lí tổng các góc của một tứ giác

Tổng số đo các góc của một tứ giác bằng 3600.

Tứ giác ABCD, A^+B^+C^+D^=3600

Ví dụ:

 (ảnh 2)

B^=36009301230750=690

Sơ đồ tư duy Tứ giác.

B. Bài tập Tứ giác

Bài 1. Cho hình vẽ. Tìm x.

Lý thuyết Toán 8 Cánh diều Bài 2: Tứ giác

Hướng dẫn giải

Áp dụng tính chất về góc vào tứ giác MNPQ, ta có:

 

M^+N^+P^+Q^=360°

Hay 3x + 4x + x + 2x = 360°

Suy ra 10x = 360° hay x = 36°.

Vậy x = 36°.

Bài 2. Cho tứ giác ABCD có A^:B^:C^:D^=6:5:4:3 . Tính các góc của tứ giác ABCD.

Hướng dẫn giải

Lý thuyết Toán 8 Cánh diều Bài 2: Tứ giác

Tứ giác ABCD có A^+B^+C^+D^=360°

Mặt khác , theo tính chất dãy tỷ số bằng nhau ta có:

 

A^6+B^5+C^4+D^3=A^+B^+C^+D^6+5+4+3=360°18=20°

Suy ra A^ = 20°. 6 = 120° ; B^ = 20°. 5 = 100° ;

C^ = 20°. 4 = 80°; D^=20°. 3=60° .

Vậy A^ = 120°; B^ =100°; C^ = 80°; D^ = 60°.

Bài 3. Chứng minh rằng trong tứ giác, mỗi đường chéo nhỏ hơn nửa chu vi tứ giác.

Hướng dẫn giải

Lý thuyết Toán 8 Cánh diều Bài 2: Tứ giác

Xét tứ giác ABCD có đường chéo AC:

AC < AB + BC (bất đẳng thức trong tam giác ABC)

AC < AD + DC (bất đẳng thức trong tam giác ADC)

Suy ra 2AC < AB + BC + AD + DC.

Do đó AC<AB+BC+AD+DC2

Chứng minh tương tự, BD<AB+BC+AD+DC2 .

Vậy trong tứ giác, mỗi đường chéo nhỏ hơn nửa chu vi tứ giác.

Xem thêm các bài tóm tắt Lý thuyết Toán lớp 8 Cánh diều hay, chi tiết khác:

Lý thuyết Bài 1: Định lí Pythagore

Lý thuyết Bài 2: Tứ giác

Lý thuyết Bài 3: Hình thang cân

Lý thuyết Bài 4: Hình bình hành

Đánh giá

0

0 đánh giá