Vận dụng 4 trang 98 Toán 11 Tập 1 Chân trời sáng tạo | Giải bài tập Toán lớp 11

636

Với giải Vận dụng 4 trang 98 Toán 11 Tập 1 Chân trời sáng tạo chi tiết trong Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian

Vận dụng 4 trang 98 Toán 11 Tập 1: Cho hình chóp S.ABCD. Trên các cạnh bên của hình chóp lấy lần lượt các điểm A’, B’, C’, D’. Cho biết AC cắt BD tại O, A’C’ cắt B’D’ tại O’, AB cắt CD tại E và A’B’ cắt D’C’ tại E’ (Hình 39). Chứng minh rằng:

Vận dụng 4 trang 98 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) S, O’, O thẳng hàng;

b) S, E’, E thẳng hàng.

Lời giải:

Vận dụng 4 trang 98 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) +) Ta có Vận dụng 4 trang 98 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Ta lại có: O là giao điểm của AC và BD nên

Vận dụng 4 trang 98 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Suy ra (SAC) ∩ (SBD) = SO.

+) Ta có Vận dụng 4 trang 98 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Ta lại có: O’ là giao điểm của A’C’ và B’D’ nên

Vận dụng 4 trang 98 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Suy ra (SA'C') ∩ (SB'D') = SO'.

+) Mặt khác mặt phẳng (SA’C’) cũng chính là mặt phẳng (SAC), mặt phẳng (SB’D’) cũng chính là mặt phẳng (SBD) do đó SO’ trùng SO. Vì vậy S, O’, O thẳng hàng.

b) +) Ta có Vận dụng 4 trang 98 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Ta lại có: E là giao điểm của AB và DC nên

Vận dụng 4 trang 98 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Suy ra (SAB) ∩ (SDC) = SE.

+) Ta có Vận dụng 4 trang 98 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Ta lại có: E’ là giao điểm của D’C’ và A’B’ nên

Vận dụng 4 trang 98 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Suy ra (SB'C') ∩ (SD'C') = SE'.

+) Mặt khác mặt phẳng (SB’C’) cũng chính là mặt phẳng (SBC), mặt phẳng (SD’C’) cũng chính là mặt phẳng (SDC) do đó SE’ trùng SE. Vì vậy S, E’, E thẳng hàng.

Lý thuyết Hình chóp và hình tứ diện

  • Hình chóp

- Cho đa giác lồi A1A2...An nằm trong mặt phẳng (α) và một điểm S không thuộc (α). Nối S với các đỉnh A1,A2,...,Anđể được n tam giác SA1A2,SA2A3,...,SAnA1. Hình tạo bởi n tam giác  SA1A2,SA2A3,...,SAnA1và đa giác  A1A2...Anđược gọi là hình chóp và kí hiệu là S.A1A2...An.

- Trong hình chóp S.A1A2...An:

+ Điểm S được gọi là đỉnh.

+ Đa giácA1A2...An được gọi là mặt đáy.

+ Các tam giác SA1A2,SA2A3,...,SAnA1được gọi là các mặt bên

+ Các cạnh SA1,SA2,...,SAnđược gọi là cạnh bên; các cạnhA1A2,A2A3...,AnA1 được gọi là các cạnh đáy.

 (ảnh 5) 

* Nếu đáy của hình chóp là một tam giác, tứ giác, ngũ giác,…thì hình chóp tương ứng gọi là hình chóp tam giác, hình chóp tứ giác, hình chóp ngũ giác,…

  • Hình tứ diện

Cho 4 điểm A, B, C, D không đồng phẳng. Hình gồm 4 tam giác ABC, ABD, ACD và BCD được gọi là hình tứ diện (hay tứ diện), kí hiệu là ABCD.

 (ảnh 6) 

Trong đó, các điểm A, B, C, D được gọi các đỉnh của tứ diện, các đoạn thẳng AB, BC, CD, DA, BD,AC được gọi là cạnh của tứ diện; các tam giác ABC, ABD, ACD và BCD gọi là mặt của tứ diện.

Hai cạnh không có đỉnh chung được gọi là hai cạnh đối diện, đỉnh không nằm trên một mặt gọi là đỉnh đối diện với mặt đó.

Từ khóa :
Toán 11
Đánh giá

0

0 đánh giá