Hoạt động 3 trang 114 Toán 8 Tập 1 Cánh diều | Giải bài tập Toán lớp 8

459

Với giải Hoạt động 3 trang 114 Toán lớp 8 Tập 1 Cánh diều chi tiết trong Bài 6: Hình thoi giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải bài tập Toán lớp 8 Bài 6: Hình thoi

Hoạt động 3 trang 114 Toán 8 Tập 1: a) Cho hình bình hành ABCD có hai cạnh kề AB và BC bằng nhau. ABCD có phải là hình thoi hay không?

b) Cho hình bình hành ABCD có hai đường chéo AC và BD vuông góc với nhau (Hình 60).

Hoạt động 3 trang 114 Toán 8 Tập 1 Cánh diều | Giải Toán 8

• Đường thẳng AC có phải là đường trung trực của đoạn thẳng BD hay không?

• ABCD có phải là hình thoi hay không?

Lời giải:

a) Do ABCD là hình bình hành nên AB = CD và AD = BC.

Mà AB = BC nên AB = BC = CD = DA.

Tứ giác ABCD có bốn cạnh bằng nhau nên là hình thoi.

b) • Do ABCD là hình bình hành nên hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường

Do đó AC  BD tại trung điểm O của đoạn thẳng BD.

Suy ra AC là đường trung trực của đoạn thẳng BD.

• Vì AC là đường trung trực của đoạn thẳng BD nên AD = AB.

Theo kết quả câu a, hình bình hành ABCD có hai cạnh kề AD và AB bằng nhau nên là hình thoi.

Lý thuyết Dấu hiệu nhận biết

Ta có dấu hiệu nhận biết:

- Hình bình hành có hai cạnh kề bằng nhau là hình thoi.

- Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.

Ví dụ: Cho tam giác ABC vuông tại A. Các điểm M, N lần lượt thuộc tia đối của tia AB, AC sao cho AM = AB, AN = AC. Chứng minh tứ giác BCMN là hình thoi.

Hướng dẫn giải

Hình thoi (Lý thuyết Toán lớp 8) | Cánh diều

Tứ giác BCMN có A là trung điểm của hai đường chéo BM và CN nên BCMN là hình bình hành.

Do tam giác ABC vuông tại A nên BAC^=90°  hay BM ⊥ CD.

Vậy hình BCMN có hai đường chéo BM và CN vuông góc với nhau nên BCMN là hình thoi.

Từ khóa :
toán 8
Đánh giá

0

0 đánh giá