Bài 2 trang 78 Toán 8 Tập 1 Cánh diều | Giải bài tập Toán lớp 8

631

Với giải Bài 2 trang 78 Toán lớp 8 Tập 1 Cánh diều chi tiết trong Bài tập cuối chương 3 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải bài tập Toán lớp 8 Bài tập cuối chương 3

Video bài giải Toán lớp 8 Bài tập cuối chương 3 - Cánh diều

Bài 2 trang 78 Toán 8 Tập 1: Cho tam giác ABC như Hình 25.

Bài 2 trang 78 Toán 8 Tập 1 Cánh diều | Giải Toán 8

a) Xác định tọa độ các điểm A, B, C.

b) Tam giác ABC có là tam giác vuông cân hay không?

c) Gọi D là điểm để tứ giác ABCD là hình vuông. Xác định tọa độ điểm D.

Lời giải:

a) • Hình chiếu của điểm A trên trục hoành là điểm – 1 và trên trục tung là điểm – 1.

Do đó, tọa độ điểm A là A(– 1; – 1).

• Hình chiếu của điểm B trên trục hoành là điểm 2 và trên trục tung là điểm – 1.

Do đó, tọa độ điểm B là B(2; – 1).

• Hình chiếu của điểm C trên trục hoành là điểm 2 và trên trục tung là điểm 2.

Do đó, tọa độ điểm C là C(2; 2).

Vậy tọa độ các điểm A, B, C lần lượt là A(– 1; – 1); B(2; – 1); C(2; 2).

b) Dựa vào các ô vuông trên hình vẽ, ta có AB // Ox; BC // Oy.

Mà Ox  Oy nên AB  BC hay B^=90°.

Ta thấy AB = BC (= 3 ô vuông).

Xét tam giác ABC có B^=90° và AB = BC nên tam giác ABC là tam giác vuông cân.

c) Tam giác ABC vuông cân tại A (AB = BC; ABC^=90°) nên để tứ giác ABCD là hình vuông thì DAB^=90°;  DCB^=90° và AB = BC = CD = DA.

Hay AB  AD; BC  CD và AB = BC = CD = DA.

 Qua điểm A, ta kẻ đường thẳng vuông góc với trục Oy.

 Qua điểm C, ta kẻ đường thẳng vuông góc với trục Ox.

 Hai đường thẳng này cắt nhau tại điểm D.

 AD cắt trục Oy tại điểm 1 nên điểm D có tung độ bằng 1.

 CD cắt trục Ox tại điểm 2 nên điểm D có hoành độ bằng 2.

Do đó, tọa điểm D là D(2; 1).

Vậy để tứ giác ABCD là hình vuông thì D(2; 1).

Từ khóa :
toán 8
Đánh giá

0

0 đánh giá