Bài 6 trang 100 Toán 11 Tập 1 Cánh diều | Giải bài tập Toán lớp 11

536

Với giải Bài 6 trang 100 Toán 11 Tập 1 Cánh diều chi tiết trong Bài 2: Hai đường thẳng song song trong không gian giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 2: Hai đường thẳng song song trong không gian

Bài 6 trang 100 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA; I, J, K, L lần lượt là trung điểm của các đoạn thẳng SM, SN, SP, SQ.

a) Chứng minh rằng bốn điểm I, J, K, L đồng phẳng và tứ giác IJKL là hình bình hành.

 b) Chứng minh rằng IK // BC.

c) Xác định giao tuyến của hai mặt phẳng (IJKL) và (SBC).

Lời giải:

a)

Bài 6 trang 100 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Trong tam giác SMN, có: IJ // MN (tính chất đường trung bình) và IJ = 12 MN.

Trong tam giác SQP, có: LK // QP (tính chất đường trung bình) và LK = 12 PQ.

Mà QP // AC // MN (tính chất đường trung bình) và PQ = MN = 12 AC

Do đó IJ // LK  và IJ = LK

Vậy qua hai đường thẳng song song ta xác định được duy nhất một mặt phẳng chứa hai đường thẳng song song đó hay I, J, K, L đồng phẳng.

Xét tứ giác IJKL có IJ // LK và IJ = LK nên IJKL là hình bình hành.

b)

Bài 6 trang 100 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Trong tam giác SMP có: IK // MP (tính chất đường trung bình tam giác SMP)

Mà MP // AD // BC (tính chất đường trung bình của hình thang)

Suy ra IK // BC.

c) Ta có: J ∈ SN mà SN ⊂ (SBC) nên J ∈ (SBC)

Lại có J ∈ (IJKL)

Do đó J là giao điểm của (IJKL) và (SBC).

Mặt khác: IK // BC (chứng minh trên);

                 IK ⊂ (IJKL);

                 BC ⊂ (SBC).

Do đó giao tuyến của hai mặt phẳng (IJKL) và (SBC) là đường thẳng đi qua J song song với BC cắt SB, SC lần lượt tại B’ và C’.

Vậy (IJKL) ∩ (SBC) = B’C’.

Sơ đồ tư duy hai đường thẳng song song.

Từ khóa :
Toán 11
Đánh giá

0

0 đánh giá