Luyện tập 2 trang 99 Toán 11 Tập 1 Cánh diều | Giải bài tập Toán lớp 11

348

Với giải Luyện tập 2 trang 99 Toán 11 Tập 1 Cánh diều chi tiết trong Bài 2: Hai đường thẳng song song trong không gian giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 2: Hai đường thẳng song song trong không gian

Luyện tập 2 trang 99 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy là hình bình hành. Xác định giao tuyến của các cặp mặt phẳng (SAB) và (SCD); (SAD) và (SBC).

Lời giải:

• Ta có: S ∈ (SAB) và S ∈ (SCD) nên S là giao điểm của (SAB) và (SCD).

Mà AB // CD;

      AB ⊂ (SAB);

      CD ⊂ (SCD).

Do đó giao tuyến của (SAB) và (SCD) là đường thẳng n đi qua S và song song với AB và CD.

Luyện tập 2 trang 99 Toán 11 Tập 1 | Cánh diều Giải Toán 11

• Ta có: S ∈ (SAD) và S ∈ (SBC) nên S là giao điểm của (SAD) và (SBC).

Mà AD // BC

      AD ⊂ (SAD);

      BC ⊂ (SBC).

Do đó giao tuyến của (SAD) và (SBC) là đường thẳng p đi qua S và song song với AD và BC.

Luyện tập 2 trang 99 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Lý thuyết Tính chất của hai đường thẳng song song

  • Trong không gian, qua một điểm không nằm trên đường thẳng cho trước, có đúng một đường thẳng song song với đường thẳng đã cho.

  (ảnh 3)

  • Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì 3 giao tuyến đó đồng quy hoặc đôi một song song.

 (ảnh 4) 

* Hệ quả: Nếu hai mặt phẳng chứa 2 đường thẳng song song với nhau thì giao tuyến (nếu có) của chúng song song với 2 đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.

  • Trong không gian, hai đường thẳng phân biệt cùng song song với đường thẳng thứ 3 thì song song với nhau.
Từ khóa :
Toán 11
Đánh giá

0

0 đánh giá