Với lời giải Toán 11 trang 94 Tập 1 chi tiết trong Bài 1: Đường thẳng và mặt phẳng trong không gian sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải Toán 11 Bài 1: Đường thẳng và mặt phẳng trong không gian
Bài 1 trang 94 Toán 11 Tập 1: Khi trát tường, dụng cụ không thể thiếu của người thợ là thước dẹt dài (Hình 28). Công dụng của thước dẹt này là gì? Giải thích.
Lời giải:
Công dụng của thước dẹt: Kiểm tra xem mặt tường đã phẳng chưa.
Áp thước vào mặt tường, nếu toàn bộ thước áp khít vào mặt tường thì mặt tường đã được trát phẳng, nếu thước không khít vào mặt tường thì cần bổ sung thêm vữa trát vào phần chưa khít đó.
Bài 2 trang 94 Toán 11 Tập 1: Hình 29 là hình ảnh của chặn giấy gỗ có bốn mặt phân biệt là các tam giác. Vẽ hình biểu diễn của chặn giấy bằng gỗ đó.
Lời giải:
Hình biểu diễn của chặn giấy bằng gỗ là:
Bài 3 trang 94 Toán 11 Tập 1: Cho ba đường thẳng a, b, c không cùng nằm trong một mặt phẳng và đôi một cắt nhau. Chứng minh rằng ba đường thẳng a, b, c cùng đi qua một điểm, hay còn gọi là ba đường thẳng đồng quy.
Lời giải:
Giả sử a ∩ b = {I} và α = mp(a, b);
a ∩ c = {J} và β = mp(a, c);
b ∩ c = {K} và γ = mp(b, c) với các điểm I, J, K phân biệt.
Khi đó α ∩ β = a và đường thẳng a chính là đường thẳng IJ.
α ∩ γ = b và đường thẳng b chính là đường thẳng IK.
β ∩ γ = c và đường thẳng c chính là đường thẳng JK.
Mà chỉ có một mặt phẳng duy nhất đi qua ba điểm I, J, K, đó là (IJK)
Khi đó a, b, c cùng thuộc mặt phẳng (IJK), điều này trái với giả thiết a, b, c không cùng nằm trong một mặt phẳng.
Vậy I, J, K phải trùng nhau hay a, b, c đồng quy.
Bài 4 trang 94 Toán 11 Tập 1: Cho hình chóp S.ABCD có AC cắt BD tại O và AB cắt CD tại P. Điểm M thuộc cạnh SA (M khác S, M khác A). Gọi N là giao điểm của MP và SB, I là giao điểm của MC và DN. Chứng minh rằng S, O, I thẳng hàng.
Lời giải:
• Ta có: S ∈ (SAC) và S ∈ (SBD)
Do đó S là giao điểm của (SAC) và (SBD).
Mặt khác: AC ∩ BD = {O}.
AC ⊂ (SAC);
BD ⊂ (SBD).
Do đó O là giao điểm của (SAC) và (SBD).
Suy ra (SAC) ∩ (SBD) = SO.
• Trong mặt phẳng (DMNC) có:
DN ∩ MC = {I}.
DN ⊂ (SDB);
MC ⊂ (SAB).
Do đó I là giao điểm của (SAC) và (SBD).
Suy ra giao tuyến SO của hai mặt phẳng này đi qua điểm I.
Hay I ∈ SO.
Vậy S, I, O thẳng hàng.
Bài 5 trang 94 Toán 11 Tập 1: Cho hình chóp S.ABC. Các điểm M, N lần lượt thuộc các cạnh SA, SC sao cho MA = 2MS, NS = 2NC.
a) Xác định giao điểm của MN với mặt phẳng (ABC).
b) Xác định giao tuyến của mặt phẳng (BMN) với mặt phẳng (ABC).
Lời giải:
a) Trong mặt phẳng (SAC), gọi giao điểm của MN và AC là P.
Mà AC ⊂ (SAC)
Do đó MN ∩ (ABC) = {P}.
b) Ta có MN ∩ (ABC) = {P} nên P ∈ (ABC)
Lại có P ∈ MN mà MN ⊂ (BMN) nên P ∈ (BMN)
Do đó P là giao điểm của (BMN) và (ABC).
Mặt khác: B ∈ (BMN) và B ∈ (ABC).
Do đó B là giao điểm của (BMN) và (ABC).
Vì vậy (BMN) ∩ (ABC) = BP.
Bài 6 trang 94 Toán 11 Tập 1: Cho hình chóp tứ giác S.ABCD có đáy không là hình thang. Gọi M là trung điểm của SA.
a) Xác định giao điểm của CD với mặt phẳng (SAB).
b) Xác định giao tuyến của hai mặt phẳng (SAB) và (SCD).
c) Xác định giao tuyến của hai mặt phẳng (MCD) và (SBC).
Lời giải:
a) Trong mặt phẳng (ABCD) ta có: gọi giao điểm của AB và CD là N.
Mà AB ⊂ (SAB)
Do đó CD ∩ (SAB) = {N}.
b) Ta có: AB ∩ CD = {N};
AB ⊂ (SAB);
CD ⊂ (SCD)
Do đó N là giao điểm của (SAB) và (SCD).
Lại có: S ∈ (SAB) và S ∈ (SCD).
Nên S là giao điểm của (SAB) và (SCD).
Vì vậy (SAB) ∩ (SCD) = SN.
c) Ta có: C ∈ (SBC) và C ∈ (MCD).
Do đó C là giao điểm của (SBC) và (MCD).
Trong mặt phẳng (SAB), gọi Q là giao điểm của MN và SB.
Mà MN ⊂ (MCD) và SB ⊂ (SBC)
Suy ra Q là giao điểm của (SBC) và (MCD).
Vì vậy (SBC) ∩ (MCD) = CQ.
Bài 7 trang 94 Toán 11 Tập 1: Cho hình tứ diện ABCD. Gọi I là trung điểm cạnh CD. Gọi M, N lần lượt là trọng tâm các tam giác BCD, CDA.
a) Chứng minh rằng các điểm M, N thuộc mặt phẳng (ABI).
b) Gọi G là giao điểm của AM và BN. Chứng minh rằng: .
c) Gọi P, Q lần lượt là trọng tâm các tam giác DAB, ABC. Chứng minh rằng các đường thẳng CP, DQ cùng đi qua điểm G và .
Lời giải:
a)
+) Xét tam giác BCD có: I là trung điểm của CD nên BI là đường trung tuyến.
Mà M là trọng tâm tam giác BCD nên BI đi qua M.
Do đó M ∈ BI.
Lại có AI ⊂ (ABI) nên M ∈ (ABI).
+) Xét tam giác ACD có: I là trung điểm của CD nên AI là đường trung tuyến.
Mà N là trọng tâm tam giác ACD nên AI đi qua N.
Do đó N ∈ AI.
Lại có BI ⊂ (ABI) nên N ∈ (ABI).
b) Trong BCD có M là trọng tâm tam giác nên .
Trong ACD có N là trọng tâm tam giác nên .
Xét ABI có: nên MN // AB (theo định lí Thalès đảo).
Xét ABI và MN // AB, theo hệ quả định lí Thalès ta có .
Xét ABG và MN // AB, theo hệ quả định lí Thalès ta có .
c)
• Gọi G’ là giao điểm của AM và CP; G’’ là giao điểm của AM và DQ.
Chứng minh tương tự câu b, ta có: và
Do đó .
Mà G, G’, G’’ cùng nằm trên AM nên G ≡ G’ ≡ G’’.
Vậy các đường thẳng CP, DQ cùng đi qua điểm G.
• Xét tam giác ABC, kẻ đường trung tuyến AE (E ∈ BC).
Ta có: Q là trọng tâm DABC nên .
Xét tam giác ABD, kẻ đường trung tuyến AF (F ∈ BD).
Ta có: P là trọng tâm ABD nên .
+) Trong mặt phẳng (AEF), có: nên PQ // EF (định lí Thalès đảo)
Mà EF // CD (đường trung bình tam giác BCD).
Suy ra PQ // CD
Theo hệ quả định lí Thalès ta có: .+
Xem thêm các lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:
Hoạt động 1 trang 85 Toán 11 Tập 1: Sân vận động Old Trafford (Hình 2) ở thành phố Manchester, có biệt danh là “Nhà hát của những giấc mơ”, với sức chứa 75 635 người, là sân vận động lớn thứ hai ở Vương quốc Anh.....
Luyện tập 1 trang 86 Toán 11 Tập 1: Nêu ví dụ trong thực tiễn minh họa hình ảnh của một phần mặt phẳng....
Hoạt động 2 trang 86 Toán 11 Tập 1: Quan sát Hình 1, nếu coi mặt sân Napoléon là một phần của mặt phẳng (P) thì đỉnh của kim tự tháp có thuộc mặt phẳng (P) hay không?....
Luyện tập 2 trang 87 Toán 11 Tập 1: Vẽ hình biểu diễn của mặt phẳng (P) và đường thẳng a xuyên qua nó....
Hoạt động 3 trang 87 Toán 11 Tập 1: Hình 9 là hình ảnh xà ngang trong môn Nhảy cao....
Hoạt động 4 trang 87 Toán 11 Tập 1: Quan sát Hình 10. Đó là hình ảnh bếp củi với kiềng ba chân. “Kiềng ba chân” là vận dụng bằng sắt, có hình vòng cung được gắn ba chân, dùng để đặt nồi lên khi nấu bếp. Bếp củi và kiềng ba chân là hình ảnh hết sức quen thuộc với gia đình ở Việt Nam. Vì sao kiềng ba chân khi đặt trên mặt đất không bị cập kênh?....
Hoạt động 5 trang 89 Toán 11 Tập 1: Hình 15 mô tả một phần của phòng học. Nếu coi bức tường chứa bảng và sàn nhà là hình ảnh của hai mặt phẳng thì giao hai mặt phẳng đó là gì?...
Luyện tập 3 trang 89 Toán 11 Tập 1: Trong Ví dụ 4 xác định giao tuyến của hai mặt phẳng (SAC) và (SBD)....
Hoạt động 6 trang 90 Toán 11 Tập 1: Cho điểm A không thuộc đường thẳng d. Lấy hai điểm B và C thuộc đường thẳng d (Hình 18)....
Hoạt động 7 trang 90 Toán 11 Tập 1: Cho hai đường thẳng a và b cắt nhau tại O. Lấy điểm A trên đường thẳng a (A khác O), lấy điểm B trên đường thẳng b (B khác O) (Hình 19)....
Luyện tập 4 trang 90 Toán 11 Tập 1: Trong mặt phẳng (P) cho tam giác ABC. Điểm D không thuộc mặt phẳng (P). Hỏi qua hai đường thẳng AD và BC có xác định được một mặt phẳng không?...
Hoạt động 8 trang 91 Toán 11 Tập 1: Hình 22 là hình ảnh của một hộp quà lưu niệm có dạng hình chóp tứ giác đều S.ABCD. Quan sát Hình 22 và trả lời các câu hỏi....
Luyện tập 5 trang 92 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh SA và AD....
Hoạt động 9 trang 92 Toán 11 Tập 1: Hình 25 là hình ảnh của khối rubik tam giác (Pyraminx). Quan sát Hình 25 và trả lời các câu hỏi:....
Luyện tập 6 trang 93 Toán 11 Tập 1: Cho tứ diện ABCD. Các điểm M, N, P lần lượt thuộc các cạnh AB, AD, BC sao cho ....
Bài 1 trang 94 Toán 11 Tập 1: Khi trát tường, dụng cụ không thể thiếu của người thợ là thước dẹt dài (Hình 28). Công dụng của thước dẹt này là gì? Giải thích.....
Bài 2 trang 94 Toán 11 Tập 1: Hình 29 là hình ảnh của chặn giấy gỗ có bốn mặt phân biệt là các tam giác. Vẽ hình biểu diễn của chặn giấy bằng gỗ đó.....
Bài 3 trang 94 Toán 11 Tập 1: Cho ba đường thẳng a, b, c không cùng nằm trong một mặt phẳng và đôi một cắt nhau. Chứng minh rằng ba đường thẳng a, b, c cùng đi qua một điểm, hay còn gọi là ba đường thẳng đồng quy.....
Bài 4 trang 94 Toán 11 Tập 1: Cho hình chóp S.ABCD có AC cắt BD tại O và AB cắt CD tại P. Điểm M thuộc cạnh SA (M khác S, M khác A). Gọi N là giao điểm của MP và SB, I là giao điểm của MC và DN. Chứng minh rằng S, O, I thẳng hàng.....
Bài 5 trang 94 Toán 11 Tập 1: Cho hình chóp S.ABC. Các điểm M, N lần lượt thuộc các cạnh SA, SC sao cho MA = 2MS, NS = 2NC.....
Bài 6 trang 94 Toán 11 Tập 1: Cho hình chóp tứ giác S.ABCD có đáy không là hình thang. Gọi M là trung điểm của SA....
Bài 7 trang 94 Toán 11 Tập 1: Cho hình tứ diện ABCD. Gọi I là trung điểm cạnh CD. Gọi M, N lần lượt là trọng tâm các tam giác BCD, CDA.....
Xem thêm các bài giải SGK Toán lớp 11 Cánh diều hay, chi tiết khác:
Bài tập cuối chương 3
Bài 1: Đường thẳng và mặt phẳng trong không gian
Bài 2: Hai đường thẳng song song trong không gian
Bài 3: Đường thẳng và mặt phẳng song song
Bài 4: Hai mặt phẳng song song