Bài 4.22 trang 93 Toán 11 Tập 1 Kết nối tri thức | Giải bài tập Toán lớp 11

1.3 K

Với giải Bài 4.22 trang 94 Toán 11 Tập 1 Kết nối tri thức chi tiết trong Bài 13: Hai mặt phẳng song song giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 13: Hai mặt phẳng song song

Bài 4.22 trang 94 Toán 11 Tập 1: Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N, P lần lượt là trung điểm của các cạnh AA', BB', CC'. Chứng minh rằng mặt phẳng (MNP) song song với mặt phẳng (ABC).

Lời giải:

Bài 4.22 trang 94 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Vì ABC.A'B'C' là hình hình lăng trụ tam giác nên ABB'A' và BCC'B' là các hình bình hành hay cũng là các hình thang.

Vì M, N lần lượt là trung điểm của các cạnh AA', BB' nên MN là đường trung bình của hình thang ABB'A', do đó MN // AB, suy ra MN song song với mặt phẳng (ABC).

Tương tự, ta chứng minh được NP // BC, suy ra NP song song với mặt phẳng (ABC).

Mặt phẳng (MNP) chứa hai đường thẳng cắt nhau MN và NP cùng song song với mặt phẳng (ABC) nên hai mặt phẳng (MNP) và (ABC) song song với nhau.

Sơ đồ tư duy Hai mặt phẳng song song.

Từ khóa :
Toán 11
Đánh giá

0

0 đánh giá