Luyện tập 2 trang 90 Toán 11 Tập 1 Kết nối tri thức | Giải bài tập Toán lớp 11

1.1 K

Với giải Luyện tập 2 trang 90 Toán 11 Tập 1 Kết nối tri thức chi tiết trong Bài 13: Hai mặt phẳng song song giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 13: Hai mặt phẳng song song

Luyện tập 2 trang 90 Toán 11 Tập 1: Cho hình chóp S.ABCD. Gọi M, N, P, Q lần lượt là các điểm thuộc cạnh SA, SB, SC, SD sao cho MAMS=NBNS=PCPS=QDQS=12 . Chứng minh rằng bốn điểm M, N, P, Q đồng phẳng.

Lời giải:

Luyện tập 2 trang 90 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Xét tam giác SAB có MAMS=NBNS=12 hay SMSA=SNSB=13 , suy ra MN // AB (theo định lí Thalés). Do đó MN song song với mặt phẳng (ABCD). Tương tự, NP // BC nên NP song song với mặt phẳng (ABCD). Vậy mặt phẳng (MNP) chứa hai đường thẳng cắt nhau MN và NP cùng song song với mặt phẳng (ABCD) nên mặt phẳng (MNP) song song với mặt phẳng (ABCD). Lập lập tương tự ta có mặt phẳng (MPQ) cũng song song với mặt phẳng (ABCD).

Hai mặt phẳng (MNP) và (MPQ) cùng đi qua điểm M và cùng song song với mặt phẳng (ABCD) nên hai mặt phẳng đó trùng nhau, tức là bốn điểm M, N, P, Q đồng phẳng.

Lý thuyết Điều kiện và tính chất của hai mặt phẳng song song

Nếu mặt phẳng (α) chứa hai đường thẳng cắt nhau và hai đường thẳng này song song với mặt phẳng phẳng (β)thì (α)và (β)song song với nhau.

  (ảnh 2)

Qua một điểm nằm ngoài một mặt phẳng cho trước có một và chỉ một mặt phẳng song song với mặt phẳng đã cho.

Cho hai mặt phẳng song song. Nếu một mặt phẳng cắt mặt phẳng này thì cũng cắt mặt phẳng kia và hai giao tuyến song song với nhau.

 (ảnh 3)

Từ khóa :
Toán 11
Đánh giá

0

0 đánh giá