Với giải Luyện tập 1 trang 89 Toán 11 Tập 1 Kết nối tri thức chi tiết trong Bài 13: Hai mặt phẳng song song giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải bài tập Toán lớp 11 Bài 13: Hai mặt phẳng song song
Luyện tập 1 trang 89 Toán 11 Tập 1: Trong không gian, cho bốn điểm A, B, C, D không đồng phẳng. Qua điểm A vẽ hai đường thẳng m, n lần lượt song song với hai đường thẳng BC, BD. Chứng minh rằng mp(m, n) song song với mặt phẳng (BCD).
Lời giải:
Vì m // BC nên m // (BCD).
Vì n // BD nên n // (BCD).
mp(m, n) chứa hai đường thẳng cắt nhau m và n (cắt nhau tại A) cùng song song với mặt phẳng (BCD) nên mp(m, n) song song với mặt phẳng (BCD).
Lý thuyết Điều kiện và tính chất của hai mặt phẳng song song
Nếu mặt phẳng chứa hai đường thẳng cắt nhau và hai đường thẳng này song song với mặt phẳng phẳng thì và song song với nhau.
Qua một điểm nằm ngoài một mặt phẳng cho trước có một và chỉ một mặt phẳng song song với mặt phẳng đã cho.
Cho hai mặt phẳng song song. Nếu một mặt phẳng cắt mặt phẳng này thì cũng cắt mặt phẳng kia và hai giao tuyến song song với nhau.
Video bài giảng Toán 11 Bài 13: Hai mặt phẳng song song - Kết nối tri thức
Xem thêm các lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Xem thêm các bài giải SGK Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Bài 12: Đường thẳng và mặt phẳng song song