Luyện tập 5 trang 47 Toán 11 Tập 1 Cánh diều | Giải bài tập Toán lớp 11

493

Với giải Luyện tập 5 trang 47 Toán 11 Tập 1 Cánh diều chi tiết trong Bài 1: Dãy số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 1: Dãy số

Luyện tập 5 trang 47 Toán 11 Tập 1: Chứng minh rằng dãy số (un) với un=n2+12n2+4 là bị chặn.

Lời giải:

Ta có: un=n2+12n2+4=12n2+1n2+2=1211n2+2<12 .

Ta lại có: un=n2+12n2+4>0

Do đó 0<un<12.

Vì vậy dãy số (un) bị chặn.

Lý thuyết Dãy số bị chặn

Dãy số (un) được gọi là bị chặn trên nếu  số M sao cho unM, nN.

Dãy số (un) được gọi là bị chặn dưới nếu  số m sao cho unm, nN.

Dãy số (un) được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại các số m, M sao cho munM,nN.

Đánh giá

0

0 đánh giá